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Abstract

Architecture descriptions are a means of denoting a software project’s building blocks
on an abstract level. ConQAT is a toolkit with which it is possible to perform a matching
between the architecture description and the source code of a project.

In this thesis, we develop two contributions to ConQAT’s static architecture validation
features. The first contribution defines a restrictivity metric on architectures. The second
is an automatic validator for overlapping regular expressions that constitute a common
problem of architecture specifications in practice.

We investigate the relevance and runtime of our contributions in a case study on eleven
real-world projects. Our results indicate that restrictivity is comparable, yet differing
among projects. Moreover, 45% of the architectures contain overlaps.

Further improvement of the proposed algorithms remains an interesting topic for future
work: Precision of the restrictivity could be increased and runtime of the overlap detection
decreased.
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1 Introduction

“I often say that when you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot express it in numbers,
your knowledge is of a meagre and unsatisfactory kind”
Lord Kelvin, 1891 [Kel91]

Every software system can be described on a high level by its architecture, an abstract
plan of what the system looks like.

A system architect has to design and maintain the architecture specification separate
from the source code. As the project evolves, architecture and source code begin to diverge
when no countermeasures are taken [FRJ09].

Software quality measurement systems have been developed which can — among other
things — perform an automatic matching between the architecture specification and the
actual architecture realised in the source code. One such system is ConQAT, “an integrated
toolkit for creating quality dashboards that allow to continuously monitor quality charac-
teristics of software systems.” [Con]

In this thesis, we develop two contributions to ConQAT’s architecture validation fea-
tures. The first contribution defines a restrictivity metric on architectures. The second is
an automatic static validation checker for overlapping regular expressions that constitute
a common problem of architecture specifications in practice.

1.1 Architecture Restrictivity

ConQAT provides the ability to define and evaluate architectures through its Architecture
Editor. It features an architecture analysis which can detect violations of the architecture
in the source code.

However, having an unviolated architecture is not the key to a well-written software
system per se, much less an indicator for a restrictive architecture specification. In practice,
we observe that system architects start with a restrictive architecture to begin with. As the
system evolves and more code is added, violations in the architecture analysis begin to
appear. Often, instead of rethinking the dependency introduced, the programmers modify
the architecture specification to allow the new dependency. Over the time, the architecture
loses its restrictivity and therefore its expressiveness.

Our goal is to define a restrictivity metric on architectures to be able to identify such
misuses.

1.2 Codemapping Overlaps

ConQAT’s architecture model comprises components and policies. Policies model allowed
and denied accesses between components. Each component must have either a subcom-
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1 Introduction

ponent or a codemapping. A codemapping is a regular expression that defines which
types from the source code belong to the component the codemapping is associated with.
Having studied architecture specifications of real-world software systems, we found these
contain up to hundreds of codemappings.

A problem arises when there is an ambiguity between the codemappings of differ-
ent components. The ConQAT architecture analysis then fails because it cannot decide
which component the type belongs to. This happens for example when two components
have been given the same codemapping by mistake. More subtly, it can also happen if
two codemappings overlap. For example, given the codemappings org.junit.* and
org.junit.tests.*, the type org.junit.tests.validationTester is matched
by both.

It is currently only possible to detect such overlaps when the architecture analysis has
failed during runtime.

Thus, our aim is to develop a static validation analysis to guarantee the components do
not have overlapping codemappings.
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2 Fundamentals

To understand this thesis, profound knowledge in automata theory and in software engi-
neering is required. In this chapter, we briefly summarise the main concepts from these
fields of computer science. Additionally, an introduction to ConQAT is given.

2.1 Automata Theory

In this section, we summarise theorems from automata theory that are essential to chap-
ter 4. [HMU79] is an excellent resource on automata theory.

Transformation of Regular Expressions to Automata

Regular expressions and deterministic finite automata (DFA) have the same expressiveness
[HMU79]. The former can be translated to the latter by converting the regular expression
to a non-deterministic finite automaton (NFA), and then converting the NFA to a DFA
[Feg, HMU79].

Overlap of Regular Expressions

Definition 2.1 (Overlap) An overlap of two regular expressions r1, r2 is defined as a string s
which lies both in L(r1) and L(r2). The two r1 and r2 are thus overlap-free iff L(r1) ∩ L(r2) = ∅
holds.

Intersection, Union and Subtraction on Automata

An intersection on automata M = M1 ∩M2 is the operation that returns the automaton M ,
which accepts L(M1) ∩ L(M2). In other words, every string accepted by both M1 and M2

is also accepted by M .
A union over automata M = M1 ∪M2 is the operation that returns the automaton M ,

which accepts L(M1) ∪ L(M2). In other words, every string accepted by either M1 or M2

is also accepted by M .
A subtraction on automata M = M1−M2 is the operation that returns the automaton M ,

which accpets L(M1)−L(M2). In other words, M accepts every string accepted by M1 but
those strings accepted by M2.

2.2 ConQAT

ConQAT consists of a frontend, its IDE, which is realised as an Eclipse plugin, and its back-
end, the ConQAT engine. In this thesis, we have expanded both parts, with an emphasis
on the engine.
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2 Fundamentals

ConQAT Engine

Among other features, the ConQAT engine is capable of calculating metrics on software
projects. Usually, these metrics are written as ConQAT processors. ConQAT processors
can be combined to form complete analyses in so-called ConQAT blocks. A detailed ex-
planation of this is given in [DFH+10, p. 69f.].

System Architectures

A description of the assembly of ConQAT architecture specifications was already given in
chapter 1. In the following, we will further detail architecture specifications and clarify
what the assessment of an architecture is.

Architecture Specification

Generally, there are two types of codemappings, inclusive and exclusive codemappings. If
a component does not have at least one inclusive codemapping, then it must by defini-
tion have at least one subcomponent, so that the component is not empty. An inclusive
codemapping defines which types from the source code are mapped to the component,
whereas an exclusive codemapping does the opposite: From the set of all included types,
the types that match against the regular expressions of the exclusive codemappings are
subtracted.

Definition 2.2 (Component Access) For two arbitrarily chosen components a and b (a 6= b),
we say that a accesses or depends on b iff at least one type from a imports or otherwise uses at least
one type from b.

To model which components are allowed to access which other components, policies in
the form of “allow”, “deny” or “tolerate” edges between components are used. By default,
every access between components is forbidden and has to be explicitly allowed through a
policy. However, if the components are connected by hierarchy — one is the parent of the
other — access is allowed.

Assessment of an Architecture

An architecture specification can be matched against the source code of a project. The
artefact generated by an architecture analysis is called the assessment of an architecture.
The assessment file is an XML description of which types in the source are mapped to
which component in the specification. It also shows so-called architecture violations. An
architecture violation occurs when one component depends on another component in the
source code, but is not allowed to do so according to the architecture specification.

To be able to assess projects in different programming languages, there are predefined
architecture analyses in ConQAT (e.g. the “JavaArchitectureAnalysis”).
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3 Architecture Restrictivity Metric

This chapter describes the design of an architecture restrictivity metric and its implemen-
tation into ConQAT.

3.1 Approach: Design of a Restrictivity Metric

The architecture restrictivity metric, despite its name, is a combination of an architectural
metric and a program code metric. This provides the possibility to see how well the ar-
chitecture design is realised in the program code. A low restrictivity could be caused by
three reasons: A low-restrictive architecture, a source code which puts almost all code into
one component, or a combination of both. A valid criticism to this design may be that it
obfuscates the clear separation between architecture and program code. However, little
value lies in an architecture that is not taken into account by the programmers, and vice
versa.

The architecture restrictivity metric is based on an architecture specification — from
which the access policies are extracted — and an assessment of the source code of the
project. From the assessment we retrieve the types of the system and which components
in the architecture these are mapped to.

Definition 3.1 (Architecture Restrictivity) By “Architecture Restrictivity”, we understand
the probability that for two arbitrarily chosen types a and b (a 6= b), type a may not access type b
in the underlying architecture.

Let ρ be the symbol for the Architecture Restrictivity of a system.

With ρ being a probability, 0 ≤ ρ ≤ 1 holds. The extreme values can be explained as
follows: A value of ρ = 0 characterises a completely unrestrictive system, where all types
can access each other. ρ = 1 characterises a perfectly restrictive system, in which every
type can only access itself. These extreme values are of course only of theoretical interest
and not to be found in practice.

To calculate ρ on an architecture, we use the following formula:

Definition 3.2 (Architecture Restrictivity)

ρ =
Number of Denied Pairs

Number of All Possible Pairs = 1− Number of Allowed Pairs
Number of All Possible Pairs

One of our explicit goals in designing the metric was to ensure that it behaves seman-
tically correct upon changes in the system: As more allow policies are introduced into an
otherwise unchanged system, the metric should reflect this and decrease. More allow poli-
cies translate to more allowed type pairs between components that previously were not
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3 Architecture Restrictivity Metric

allowed to access each other. The second numerator in definition 3.2 increases. As a con-
sequence, ρ decreases. As the metric is transitive regarding the allowed types, the inverse
is also true: ρ increases as allow policies are removed from the specification.

Nota bene: The opposite, “as more types are introduced into an otherwise unchanged
architecture, the metric should reflect this and decrease”, is not always true.

Definition 3.3 (Component Cardinality) Given a component a, let |a| be the number of
matched types of the component a.

When n more types are introduced into a component a, the number of allowed inner-
component type pairs increases by |a+n|∗|a+n−1|−|a|∗(|a|−1). The number of externally
available types from a increases, too, adding more allowed pairs for every component that
depends on a. However, because the total number of possible type pairs might increase
along with it, this increase might be greater than the increase caused in the allowed pairs.
Therefore, ρ might increase.

Changes in the architecture specification usually have more impact on ρ than changes
in the source code. Imagine two components of size 100 each. Introducing a single allow
policy in the specification between the two components leads to 10,000 new allowed pairs.
Introducing one more type in the source code leads to an increase of only 100 new allowed
pairs. Furthermore, a source code change relevant to ρ is usually associated with hundreds
of man hours, whereas the architecture specification can be changed in a minute. This
emphasises that changes to the architecture specification be well thought about.

Manual Calculation of the Restrictivity

To get a better understanding of the metric, we give a manual validation of the calcula-
tion for ρ in the following. The scenario was also integrated as a system test called “ac-
cessToLib” with a freely invented architecture to test whether our processor is inline with
the manually verified value for ρ.

Component Name Matched Types
App 2

special-app 3
Lib 4

Table 3.1: The matched types of the components in figure 3.1.

We calculate ρ by summarising all allowed and then all disallowed type pairs: All types
which are in the same component may access all other types of the same component. That
makes for 2 ∗ 1 + 3 ∗ 2 + 4 ∗ 3 = 20 allowed type pairs (App, special-app, Lib). Allowed
access through the policy from App to Lib is granted for (2+3)∗4 = 20 type pairs (special-
app is a subcomponent of App, and the policy stretches to subcomponents, too). Allowed
accesses because of a sub or super type account for (2 ∗ 3) ∗ 2 = 12 pairs (special-app and
App). This makes a total of 52 allowed type pairs.

Denied pairs are only from Lib to App, which are (2 + 3) ∗ 4 = 20 type pairs. Thus, the
number of all possible pairs is 52 + 20 = 72.
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3 Architecture Restrictivity Metric

Using definition 3.2, we receive ρ = 1 − 52
72 ≈ 0.278, which is exactly the result of our

“RestrictivityMetricAnalyzer” processor.

Figure 3.1: The architecture of the “accessToLib” scenario.

3.2 Implementation

The restrictivity analysis was implemented into ConQAT as the “ArchitectureRestrictiv-
ityAnalyzer” processor.

To check whether the requirements specified against the metric hold, eight system tests
were added. Additionally, the scenario described in section 3.1 was added as a system test.

To be able to conveniently use the processor within ConQAT, a number of predefined
blocks were added. The “ArchitectureRestrictivityMetric” block is the base building block
for all restrictivity analyses. In this block, the complete chain of reading an architecture,
setting up the “ArchitectureRestrictivityAnalyzer” processor, assessing and colouring of
the result and filtering the output is taking place. Since setup of the “ArchitectureRe-
strictivityAnalyzer” processor differs substantially based on the source for the analysis,
there are two further blocks that perform a restrictivity analysis based on either a Java
source (“JavaSourceRestrictivityAnalysis”) or an assessment file (“AssessmentFileRestric-
tivityAnalysis”).

Algorithm

Our algorithm calculates the number of allowed and possible pairs and then calculates
ρ by means of a simple division. To infer the allowed and denied access policies, the
architecture specification is used. The assessment is then only needed to infer how many
types are matched to the components. Thus, an architecture violation in the source code
— for example caused by a dependency of types from components that may not access
each other according to the architecture — is not taken into account for the calculation
of the restrictivity. The value of the metric can therefore only be considered valid if the
architecture is not violated.
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3 Architecture Restrictivity Metric

We prefer to count the number of allowed pairs over the number of denied pairs, as it
is a more straight-forward and intuitive approach to count the allowed edges. Further-
more, most architectures have more (implicit) deny policies than allow policies, so that
computation of the allowed pairs is shorter, too.

Instead of comparing every matched type with every other — the intuitive approach to
calculate the metric — ρ is calculated on the more abstract component level. A comparison
is made between all two components a, b.

• If a 6= b, then the number of possible types from b a type from a can access, is simply
|b|. Hence, the total number of possible pairs for the two components is |a| ∗ |b|.

• If a = b, then the number of possible type pairs is |a| ∗ (|a| − 1). This is because for
any type x in a, there are only |a| − 1 other accessible types in a.

If b is either a subcomponent of a, or there is an allow policy from a to b (or any of a’s
parents to b or any of its parents, as long as there is no deny policy), then the calculated
type pairs are also added to the allowed types. Otherwise, the pairs are not allowed and
only added to the possible type pairs.

Having counted the number of all possible and all allowed type pairs, we use the for-
mula from definition 3.2 to calculate ρ.

In comparison to the naive algorithm of traversing every type pair (which lies in O(n2),
with n being the matched types), this algorithm is several orders of magnitude faster.
However, it is still in O(m2), where m is the number of components (m� n).

Validation of the “ArchitectureRestrictivityAnalyzer”

To validate the result of the optimised processor, a naive implementation of the algorithm
was created as a second processor. This processor builds a pair list of all possible matched
type pairs in the system. Hence, the number of all possible types is simply the size of
the pair list. It then iteratively checks for each type pair whether it is allowed given the
architecture specification. We performed checks against nine of the study objects from
chapter 5 (for two systems the algorithm ran for longer than an hour and was thereafter
stopped) and against the system described in section 3.1. The calculated restrictivity was
identical to the metric obtained from the “ArchitectureRestrictivityAnalyzer”.

8



4 Codemapping Overlap Analysis

This chapter describes the design and implementation of an overlap detection for archi-
tecture descriptions in ConQAT. An algorithm in pseudo-code reveals the details of the
implementation.

4.1 Approach: Design of an Overlap Detection Algorithm

In this section, we first describe the basic idea behind the algorithm for the overlap de-
tection. Hereafter, the step in the algorithm where excluded codemappings are taken into
account is described.

The Overlap Algorithm Principle

To detect overlaps in the architecture, it is principally necessary to compare each codemap-
ping r1 with each other codemapping r2. This iteration procedure is shown in algorithm 1
on the component level.

Algorithm 1 IterationAlgorithm

Require: allComponents containing all components of the architecture in a list
for component ∈ allComponents do

for comparisonComponent ∈ allComponents do
if component 6= comparisonComponent then

checkComponentsForOverlaps(component, comparisonComponent)
end if

end for
end for

Then, a check for overlaps of the two codemappings has to be performed. Since the
codemappings are not mere text strings, but regular expressions, a direct comparison of
the two is impossible. Instead, a conversion to finite automata is applied to r1 and r2
separately. The automataR1 andR2 are semantically equivalent to the regular expressions
they were converted from (cf. section 2.1). As depicted in section 2.1, an intersection of
two automata returns the commonly accepted language of the two intersected finite state
machines. We intersect the automata R1 and R2 and call this resulting automaton the
“intersection automaton” of the two regular expressions. This step is depicted in figure 4.1
and described in algorithm 3.

For the intersection automaton, we can then infer the set F of accepting states. There are
two cases:

9



4 Codemapping Overlap Analysis

Algorithm 2 checkComponentsForOverlaps(component, comparisonComponent)

Require: component 6= comparisonComponent
componentIncludeRegExen← include codemappings from component
componentExcludeRegExen← exclude codemappings from component
comparisonIncludeRegExen← include codemappings from comparisonComponent
comparisonExcludeRegExen← exclude codemappings from comparisonComponent

componentExlucdeAutomaton← exclusionAutomaton(componentExcludeRegExen)
comparisonExlucdeAutomaton← exclusionAutomaton(comparisonExcludeRegExen)

for regEx ∈ componentIncludeRegExen do
R1 ← toAutomaton(regEx)
R1 ← R1 − componentExlucdeAutomaton
for comparisonRegEx ∈ comparisonIncludeRegExen do
R2 ← toAutomaton(comparisonRegEx)
R2 ← R2 − comparisonExlucdeAutomaton
overlap← detectOverlap(R1, R2)
if overlap then

return overlap {Returns the first found overlap with a warning text.}
end if

end for
end for

• If F = ∅, then there are no overlaps between the two regular expressions. Search for
overlaps is proceeded with the next codemapping r2 not yet compared to r1.

• If F 6= ∅, then there is at least one possible path through the intersection automaton.
In this case, we save the shortest possible path through the automaton along with
the overlapping codemappings as an error message for the components containing
each codemapping. The shortest path through the automaton serves as an exam-
ple with which system architects can conveniently see the overlap between the two
codemappings. The search for further overlaps for codemapping r1 is aborted.

The loop continues until all codemappings have been compared to each other with the
above algorithm. Codemappings from the same component are not compared, as it does
not pose a problem when there are overlaps: All types would be matched to the same
component anyway.

Algorithm 3 detectOverlap(R1, R2)

R← R1 ∩R2

if hasNoAcceptingStates(R) then
return

else
return shortestAcceptingExample(R)

end if

10



4 Codemapping Overlap Analysis

We deduce from the depicted algorithm that our algorithm is in O(n2), where n is the
total number of inclusive codemappings in the architecture.

Reg Ex DFA

Reg Ex DFA

∩ DFA

Figure 4.1: Principle of the algorithm: Conversion to DFAs, performing the intersection on
the two DFAs, returning an intersected DFA. [Mø11] has built-in support for
the conversion from a regular expression to a DFA, the intersection of DFAs
and for returning a given DFA’s shortest accepting example.

Exclude Codemappings

The actual algorithm implemented differs from the simplified textual description given in
section 4.1 in that it has to consider not only inclusive, but also exclusive codemappings.
Exclusive codemappings specify which types are not mapped to the components (for a
more detailed description refer to section 2.2). To generate valid overlap results, it is crucial
to incorporate the exclusive codemappings into the algorithm.

Definition 4.1 (Exclusion Automaton of a Component) Given a component a, each exclu-
sive codemapping in a is converted to a DFA. All DFAs are joined to create one common DFA that
matches any of the excluded expressions. We call the resulting automaton a component’s “Exclu-
sion Automaton”.

Therefore, for every codemapping checked — be it r1 or r2 — the exclusion automa-
ton of the component it belongs to is constructed. The exclusion automaton is then sub-
tracted from the automaton the codemapping has been converted to. This way, the exclude
codemappings are regarded in algorithm 2. The resulting automata overwrite R1 and R2

which are then analysed as described in section 4.1.

Algorithm 4 exclusionAutomaton(regExList)

excludeAutomaton← new Automaton

for regEx ∈ regExList do
R← toAutomaton(regEx)
excludeAutomaton← excludeAutomaton ∪R

end for
return excludeAutomaton

11



4 Codemapping Overlap Analysis

4.2 Implementation

Use of dk.brics.automaton Library

For the algorithms 2, 3 and 4, functions from the automaton theory are indispensable,
namely toAutomaton, shortestAcceptingExample and the “∪”, “∩” and “−” operations on
automata. Instead of writing our own implementation of an automaton library, we used
the third party package dk.brics.automaton from [Mø11]. The package is distributed
under a BSD license, so its integration into ConQAT is legally allowed.

Integration of Overlap Algorithm into ConQAT

One of this thesis’ main goals was to be able to use the overlap detection from the engine
as a processor as well as to integrate it into the IDE of ConQAT, namely the Architec-
ture Editor. The core functionality of the algorithm is implemented in the ConQAT
engine. Since access from the IDE projects to the engine is allowed, we can thereby
keep code duplication to a minimum. Code has been added to ConQAT in the
org.conqat.engine.architecture.overlap package for the engine and
org.conqat.ide.architecture.databinding and
org.conqat.ide.architecture.model for the IDE.

However, the IDE and engine projects use different type hierarchies so that the algorithm
had to be kept generic by introducing interfaces. Fortunately, the IDE closely resembles
the type hierarchy from the engine so most of the functionality we relied on in the engine
was already implemented. Existing types from the engine and the IDE were changed to
implement the new interfaces. This way, the actual algorithm implemented in the engine is
independent of both type hierarchies. It is also granted that the results from both analyses
be identical.

The integration into the IDE is shown in figure 4.2. The validation for overlaps is auto-
matically performed on every save of the architecture. By clicking the “Cancel” button, a
validation that takes too long can be aborted by the user.

Integration into ConQAT Tests

To ensure the correctness of the generated source code, both unit and system tests were
added to ConQAT.

System Tests

The system tests consist of one smoke test and one regression test. The smoke test analyses
a large architecture to check the stability of the algorithm. In order to ensure none of
the many refactorings employed during the code review phase has broken the overlap
detection, a regression test on a small, freely invented architecture was introduced.

Unit Tests

Following the usual ConQAT programming paradigm, JUnit tests were added to test parts
of the functionality created for the overlap detection. The IDE code could not be tested, as

12



4 Codemapping Overlap Analysis

Figure 4.2: Architecture Editor displaying the overlap analysis progress monitor.

there is no support for proper UI testing in ConQAT at the date of writing this thesis.

Syntax Comparison Between java.util.regex and
dk.brics.automaton-Style Regular Expressions

The regular expression syntax supported by java.util.regex and
dk.brics.automaton has a few subtle differences. More specifically, the regular
expression syntax supported by [Mø11] is somewhat limited compared to [Jav]. It is
important to find and eliminate those differences since the mapping process described
in 2.2 is performed using Java’s regex-package — whereas the conversion to automata
is done using the library [Mø11]. If the overlap detection algorithm interprets a regular
expression differently than the mapping process, possible overlaps might not be detected.
Furthermore, if the predefined character sets are not the same, false examples might be
returned. Therefore, a conversion utility class was written that realises the transformation
rules summarised in table 4.1.

13



4 Codemapping Overlap Analysis

Construct java.util.regex syntax Equivalent dk.brics.automaton syntax
Standard
RegEx Opera-
tions

| & Supported

Character
Class Opera-
tions

-, ∧, &&, inner-[]
-, ∧, unsupported intersection, unsupported
concatenation

Predefined
Character
Classes

Converted

\d \D [0-9] [ˆ0-9]

\w \W [A-Za-Z_0-9] [ˆA-Za-z_0-9]

\s \S [ \t\n\x0B\f\r] [ˆ \t\n\x0B\f\r]

Quantifiers

x? x?? x?+ x, once or not at all, syntax supported
x* x*? x*+ x, zero or more times, syntax supported
x{n} x{n}? x{n}+ x, at least n times, syntax supported
x{n,m} x{n,m}? x{n,m}+ x between n and m times, syntax supported
greedy reluctant possessive No support for matching strategy. Unsup-

ported greedy and possessive quantifiers

Capturing
groups

((a)) Supported

Backreferences (\d\d)\1 Not supported

Boundary
matchers

ˆ, \$, \b, \B, \A, \Z Not supported

Table 4.1: Table depicting the main syntax differences between java.util.regex and
dk.brics.automaton.
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To evaluate the restrictivity and overlap analysis, we conducted a case study with eleven
current software projects.

5.1 Research Questions

We investigate the following five research questions:

RQ 1.1 How do the investigated systems compare regarding their restrictivity?
Since we do not know which values we could expect from our metric for real-world
specifications, we have to analyse and compare them. How well does the metric
distribute across different systems?

RQ 1.2 Is the restrictivity dependent on the system size?
Due to different effects in the design of the metric, it could be that larger or smaller
systems automatically have a better chance of receiving a higher restrictivity metric.
Ideally, to make the metric comparable amongst systems of all sizes, we would not
want such effects.

RQ 1.3 How long is the runtime of the restrictivity analysis?
The runtime has a relevance on the possible usage within a ConQAT environment.
Could it be that the processor takes so long that a restrictivity analysis can only be
made on a nightly basis for large projects?

RQ 2.1 Do overlaps occur in real-world architecture specifications?
The second sub-goal of this case study is to find out whether there exist overlapping
codemappings in real-world architecture specifications. If so, do they constitute an
actual fault in the architecture specification?

RQ 2.2 How long is the runtime of the overlap analysis? Is it dependent on characteristics of the
analysed system?
The runtime has a relevance on the possible usage within a ConQAT environment.
Could it be that the processor takes so long that an overlap analysis can only be made
on a nightly basis for large projects? This would also make the instant validation
check in the IDE pointless. The runtime of the processor is of interest to identify
possible algorithmic improvements.

15
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5.2 Study Design

To conveniently analyse the study objects, we generated a ConQAT block that comprises a
statistics part with the “ArchitectureStatisticsAnalyzer” and “MatchedTypesAggregator”,
a restrictivity analysis — the “AssessmentArchitectureRestrictivity” — and an overlap de-
tection — the “ArchitectureOverlapAnalyzer” (cf. figure 5.1). This block is executed via a
ConQAT run configuration on each project.

For the reported runtimes, only the exact processor execution time is measured. The
minimum of five successive runs is taken. This is because hard drive operations or other
processes can slow down execution of ConQAT blocks. The basis for the runtime results
was a 2.2 GHz Core2Duo processor with 3 Gigabyte RAM.

Figure 5.1: The CaseStudy block used to analyse every study object.

RQ 1.1 The restrictivity was determined by the created “AssessmentArchitectureRestric-
tivity” processor. Based on the collected ρ values we calculated the mean and made
an assessment suggestion for three restrictivity categories. The mean might only be
considered within the scope of this case study as it is not representative of classify-
ing other projects into the three proposed categories. An outlier is defined as any ρ
which is not within µ ± σ. We explain outliers from the mean by a manual inspec-
tion of the assessment file in the Architecture Editor, supported by the results of the
“ArchitectureStatisticsAnalyzer”.

RQ 1.2 We performed a correlation of the variables “matched type size” and “restrictiv-
ity” (as obtained from RQ 1.1).

RQ 1.3 We extracted the runtime of the created ConQAT processor from the ConQAT
HTML execution time map and estimated whether it could become too time-
consuming.
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RQ 2.1 We measured the number of overlaps by virtue of our created “ArchitectureOver-
lapAnalyzer” processor. The reported overlaps are the number of overlapping com-
ponents, and not the number of overlapping codemappings (which would be greater,
or equal to the number of overlapping components). Thus, if two components have
one overlapping codemapping, the reported number is two. However, if the two
components share more than one overlapping codemapping, these additional over-
laps are not counted, and the reported overlap number remains two.1 We examined
the overlaps detected and classified them into clusters, if they follow the same pat-
tern.

RQ 2.2 We extracted the runtime of the created ConQAT processor from the ConQAT
HTML execution time map and estimated whether it could become too time-
consuming. If the architecture contained overlaps, these were removed to the best
of our knowledge and the runtime on the overlap-free architecture was measured.
Comparing runtimes on some architectures which contain overlaps and some which
do not would have led to wrong results due to algorithmic optimisation upon the
discovery of an overlap.

5.3 Study Objects

Ten of the examined systems stem from our industrial partner Munich Re and are C#
projects. The remaining system is ConQAT itself, written in Java. The systems are used in
a productive environment, yet still undergo maintenance and development. To conform
to a non-disclosure agreement with Munich Re, the source data is not publicly available
and the results have been anonymised. The data we received from Munich Re consisted of
an architecture definition and an assessment file (as obtained by running an “ILArchitec-
tureAnalysis”) for each project. The ConQAT architecture and assessment files were taken
from the internal overnight analysis run on August, the 23rd of 2011. Although these are
not publicly available either, the ConQAT source itself is (see section A.1).

To obtain an overview of the analysed systems, the ConQAT processor “Architec-
tureStatisticsAnalyzer” was written. It gathers statistical data from the assessment and
architecture files. An overview of the systems’ characteristics, generated by this proces-
sor, is given in table 5.1. To get a general idea of the analysed systems, we measured the
number of components as well as codemappings and matched types.

The number of components ranges from 30 to 99 (µ = 49.5, σ = 20.3), the number of
codemappings from 23 to 214 (µ = 71.7, σ = 53.4). The matched types parameter, indica-
tive of the actual size of a project, ranges from 307 to 8,407 (µ = 3025.4, σ = 2455.8). The
smallest and largest systems differ greatly in their matched type size, with System I being
more than 27 times the size of System B. Due to the large standard deviations present in
codemapping and matched type sizes (σ is 75% and 81% of µ respectively), we can con-
clude that we research a broad variety of heterogeneous systems ranging from small to
big projects. The number of matched types loosely relates to the number of codemappings
(Pearson product-moment correlation coefficient r = 0.63, confidence α = 0.05), so that

1The “ArchitectureOverlapAnalyzer” processor reports the additional overlaps in the overlap list. Report is
limited to one overlap per codemapping (see section 4.1).
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larger software systems show the tendency to have more codemappings in their architec-
ture specification.
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Figure 5.2: Plot of the variables “number of codemappings” and “matched types”. The
variables show a significant linear correlation (Pearson’s r = 0.63).

5.4 Architecture Restrictivity

Results: RQ 1.1

At a range of 0.483 to 0.804, the metric distributes nicely for the examined study objects.
The calculated average for ρ is µ = 0.65, the standard deviation σ = 0.1. Subsequently,
we assess projects with ρ <= 0.55 as unrestrictive (red), 0.55 < ρ <= 0.75 as restrictive
(yellow) and ρ > 0.75 as very restrictive (green). In the following, we will inspect Systems
D and H which have a significantly lower restrictivity than average, and System C which
has an above-average restrictivity.

System C

System C, although it is the second-smallest system analysed in this study, has a relatively
large number of components at 37. The greater the number of components an architecture
has, the smaller is the number of dependencies allowed, as long as not too many access
policies are used in return. The architecture is split into eight top level components, all
of which have a roughly equal size of 30 to 90 matched types. The only exceptions are
one slightly bigger component A at size 273 and one very small component B at size 5.
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5 Case Studies

In contrast to System D, no allow policies between the top-level components are speci-
fied. Fine granular, subcomponent access has been modelled instead. All of the high level
components (with the exception of B) are further divided into two to six subcomponents,
increasing ρ even further.

System D

In System D we find an architecture that is essentially split into three big components
A, B and C, containing 491, 292 and 260 matched types each. Component C with 260
matched types is not further split up, thus considerably decreasing the restrictivity of the
architecture. The components B and C are given top-level access to the A-component, so
that every type they contain may access every type in component A. This generates a total
of 260 ∗ 491 + 292 ∗ 491 = 271, 032 allowed dependencies (this is 23.6% of the total type
pairs, and causes a decrease of ρ by 0.236), a good deal of which is probably unnecessary,
if access to A had been modelled more fine granularly.

System H

System H features five top level components, three of which have roughly the same size
with 650 types. Allow policies between three of the top level components are modelled.
Removing these three edges leads to ρ = 0.798 (∆ρ = 0.315). This is a situation comparable
to System D. Additionally, there are two rather large subcomponents — at 505 and 338
matched types respectively — with no further subdivision. After removing these, ρ rises
by 0.065.

Results: RQ 1.2

The two variables “matched types” and “restrictivity” show a weak, insignificant correla-
tion (Pearson’s r = 0.25, α = 0.1). We fail to reject the null hypothesis that matched types
and restrictivity do not correlate and can therefore answer RQ 1.2 negatively: The metric
is not related to the system size.

Results: RQ 1.3

At a maximum runtime of merely 0.3 seconds, the optimisations in the algorithm for the
computation of the architecture restrictivity show effect. The runtime of this processor is
so short, that we dismiss RQ 1.2: Analysis-runtime even for very large software projects is
well under a second.

Discussion

As we have seen in RQ 1.1, outliers (both higher and lower than average values) can be
explained by manual inspection, supporting the requirement that the metric be compre-
hensible. Given the results from the manual inspection of our study objects, in order to
receive a higher ρ, it seems to be better to have several top-level components of equal
size than only two to three which are then specialised. If these top-level components then
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have allow policies between them, ρ decreases even further, a pattern observed in both
below-than-average performing Systems D and H.

RQ 1.2 shows no significant correlation between the system size and the metric. This
enables us to apply the metric across all systems and compare them among each other.

Furthermore, runtime of the restrictivity analysis is negligible (cf. RQ 1.3) so we can
analyse projects of arbitrary sizes.

5.5 Overlapping Codemappings

From our experience in working with ConQAT and communicating with others working
with ConQAT, we know that overlaps are a significant problem in architecture specifica-
tions. With the help of this case study, we want to verify and quantify this statement based
on empirical data.

The architecture files used in this study had been generated using ConQAT releases
without support for automatic overlap detection (ConQAT 2011.7 is the first version to
support overlap detection). They were then analysed with the help of the newly written
ArchitectureOverlapAnalyzer.

Results: RQ 2.1

We found that five out of the eleven architecture files analysed show overlaps in their
codemappings. All of the found overlaps are real errors. No false positives were found,
i.e. all the reported overlaps represent genuine problems. Some of the overlaps are caused
by wrong syntax (forgetting to escape a character), whereas most are caused by regular
expressions that are too greedy. With the exception of System F, overlaps are mostly limited
to a small subset of components. Often, these components are subcomponents and share
a common parent. When building parallel structures in architecture descriptions, there
seems to be a tendency to copy the mistakes (System J, System A).

Therefore, RQ 2.1 can be answered positively.

System A

System A has four clusters of overlaps, with overlappings limited to the scope of each
group. Two analogous clusters are of size three and the other two analogous clusters of size
two. All of the overlaps reported show the same pattern: Subcomponents have identical
codemappings associated with them.

System D

The reported results for architecture D appear to be false positives at first. There is a
component “No namespace” which should match every type that has no namespace and
thus belongs to the default package. An overlap is reported to have occurred with the “No
namespace” component and another component “APackageComponent” from the system.
However, when inspecting the actual codemappings of the “No namespace” component
we find that the regular expression used for this is
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Listing 5.1: Faulty regular expression for component “No namespace”

[ˆ.]+

This is a somewhat peculiar construction which is difficult to interpret at first: It is auto-
matically resolved to

Listing 5.2: Corrected regular expression for component “No namespace”

[ˆ\.]+

By escaping the dot, it is clear that a simple, plain dot is meant – and not the all-
matching character “.”. This is an interpretation of the regular expression according to
java.util.regex. However, our Automaton library is not capable of auto-escaping,
thus interpreting regular expression 5.1 in a different manner.

Component “APackageComponent” contains a regular expression

Listing 5.3: Faulty regular expression

APackageName..*

Because . bears a special meaning, it is necessary to escape every dot that should be
interpreted as a plain dot. Thus, the correct regular expression should read

Listing 5.4: Corrected regular expression

APackageName\..*

We found the corrected regular expression to be in line with all other regular expressions
in this architecture: They all feature a leading backslash before a dot. So, it was forgotten
to add the escape character in this regular expression.

Summarising our findings for System D, we detect two problems:

1. The dot in the character class in regular expression 5.1 of component “No names-
pace” should have been escaped, as shown in regular expression 5.2.

2. A dot in the codemapping for component “APackageComponent” was unescaped,
when it should have been escaped, as shown in regular expression 5.4.

System F

System F has one cluster of overlaps. A component, called default component, has several
regular expressions, one of which is:

Listing 5.5: Regular expression

[a-zA-Z]+

Since there are 75 other components with codemappings that consist of only letters in the
architecture, there are 76 overlappings. A solution is to remove regular expression 5.5.
The system architect has to be asked whether there are types he wants to match with this
expression. The assessment file shows there are none at the moment.
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System Characteristics Overlap Analysis
System Name Codemappings Runtime ∆ Runtime

(Inclusive/Exclusive) (in ms) (in ms)
System A 34 (32/2) 4,935 15
System B 23 (22/1) 4,830
System C 43 (32/11) 9,299
System D 53 (34/19) 32,378 1,864
System E 55 (44/11) 10,563
System F 213 (118/95) 307,766 242,015
System G 57 (57/0) 7,792
System H 36 (32/4) 6,409 -1,127
System I 128 (105/23) 105,889
System J 122 (73/49) 123,746 96,893
ConQAT 50 (50/0) 6797

Table 5.2: The 11 study objects (System A-J, ConQAT) with overlaps removed from System
A, D, F, H and J. We are convinced the negative delta for System H is insignificant
and lies within the normal variability of the runtime of ConQAT processors.

System H

The overlaps for architecture H are analogous to those reported for System D.

System J

System J has three clusters of overlaps in total. The architecture has several non-obvious
overlaps spread over the whole description. In particular, there is one cluster with analo-
gous subcomponents that share expanded regular expressions with five top-level compo-
nents in the architecture. Additionally, there is another cluster consisting of two subcom-
ponents with overlaps.

Results: RQ 2.2

The runtime results of the algorithm show room for improvement. The runtime for
overlap-free architectures ranges from a few seconds for some systems (System A, B, G,
H) to a few minutes (System F, cf. table 5.2).

A very strong, significant correlation between the number of codemappings and the
processor runtime could be determined (Pearson product-moment correlation coefficient
r = 0.97, confidence α = 0.01).

Overall, RQ 2.2 must be answered differentiatedly: For many architectures in small
to medium-sized projects, the runtime of the overlap analysis is well under 20 seconds.
Architectures with many codemappings (n > 50) will experience longer runtimes that
might grow problematic for instant validation of architectures upon saving them.

After removing the overlaps, the runtime showed two different behaviours. For some
systems it stayed nearly identical (System A, D, H). Others experienced considerably
longer computation times (System F, J).
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Figure 5.3: Plot of the variables “number of codemappings” and “overlapruntime”. The
variables show strong linear correlation (Pearson’s r = 0.97).

Discussion

In this study we counted the number of overlapping components and not the number
of overlaps itself. If we wanted to receive a correct number for all overlaps, algorithmic
optimisations for the bad case would have been needed to be removed. Therefore, we
regressed to the number of overlapping components.

As depicted in section 4.1, for algorithmic reasons, the “ArchitectureOverlapAnalyzer”
reports a maximum of one overlap per codemapping. This algorithmic design is reason-
able, since in our study we did only encounter a single case where a codemapping had
an overlap with more than one other codemapping (System J). Readability of error results
might drop if more than one overlap per codemapping were reported. Our study shows
that after removing the reported overlaps, all of the architectures but one (System J) in-
stantly reported overlap-free. Only for System J repeated execution of the overlap analysis
was necessary to resolve all overlaps. This indicates that there is not usually more than
one overlap between codemappings, justifying the algorithm design.

The answers we received for RQ 2.1 show that overlaps are a common problem in real-
world architecture specifications. On average, nearly every second architecture descrip-
tion contains potentially error-causing overlaps.

The results from RQ 2.2 demonstrate that runtime can increase considerably when ar-
chitectures that contained overlaps are made overlap-free (cf. table 5.2). Thus, optimisa-
tions for the “good case” — when no overlaps are present — are strongly recommended
as future improvements of the algorithm. The fact that most runtimes are shorter than 10
seconds, though, justifies the decision to include an automatic overlap validation when
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saving an architecture file with ConQAT’s Architecture Editor. Validation can be aborted
by a single click of the user in case it takes too long.
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6 Related Work

In this chapter, we summarise and compare similar work by other researchers on architec-
ture metrics and overlapping regular expressions.

6.1 Architecture Restrictivity

In the software engineering community, software metrics have acquired a somewhat bad
smell about them. Metrics have often been poorly backed by practical validation, diffi-
cult to understand or misinterpreted, as is the case with cyclomatic complexity, to name a
renowned example [She88].

Principally, according to [SI93] there are three different kinds of software metrics: Code
metrics, design metrics and specification metrics. Code metrics are calculated on the basis
of the source code — the lines of code metric (LOC) is a simple example. In contrast, design
metrics are mostly centred on the architecture of a system. Specification metrics deal with
the product specifications — the functional requirements for example. The restrictivity
metric from chapter 3 can be considered a design metric, for it is mainly a calculation on the
architecture, even though it takes abstract information from the source code into account,
namely the number of matched types per component. A categorisation as a combination
of a design and code metric is equally reasonable with the same argument (cf. section 3.1).

Design metrics can be further specified into intra-modular and inter-modular metrics,
and a mixture of both [SI93]. Intra-modular metrics capture information internal to a mod-
ule, whereas inter-modular metrics capture the relationship between modules. Since the
restrictivity combines both aspects, it can be considered an intra- and inter-modular de-
sign metric. [SI93] notes that “a number of different design metrics have been proposed.
They differ mainly in the detail of how best to capture coupling and cohesion”. Cohesion
is the “singleness of purpose or function of a module” and coupling “the degree of inde-
pendence” which a module has. By module, [SI93] refers to the top-level building blocks
in the architecture, in our case the components on the first hierarchy level. The restrictivity
is not based on the concept of coupling and cohesion, although sound architectural design
with a high degree of cohesion and little coupling will lead to higher ρ values.

Since the release of [SI93], little has changed in this area of research. In an attempt to
capture the analysability of an architecture, [BCvDV11] proposes a metric that takes the
number of top-level components and their relative sizes into account. Apart from the
aspect that the size of a component is considered and that the metric is architectural, there
is no further similarity between the so-called “Component Balance” metric [BCvDV11]
and the architecture restrictivity.

Therefore, the restrictivity represents a novel idea for the definition of a design metric.

26



6 Related Work

6.2 Overlap Analysis

While it is a generally known fact that regular expressions can overlap, there is no ded-
icated research done on it. We found that overlap detection is only scarcely mentioned
in [BSCV06, BJP06]. [SVW09] describes extensible languages whose terminal symbols are
represented by regular expressions. They identify the problem of overlapping regular ex-
pressions between the terminal symbols. However, no detection algorithm for such over-
laps is presented.

Therefore, our thorough approach to overlap detection is novel.
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7 Conclusion and Future Work

This chapter draws conclusions from the conducted work and suggests possible improve-
ments for the future.

7.1 Conclusion

In this thesis, we have developed ideas and algorithms for the static validation of architec-
ture descriptions. Specifically, we integrated a restrictivity metric analysis and an overlap
detection into ConQAT.

Having evaluated eleven real-world projects in a case study, we found that the mean
restrictivity is ρ = 0.65 and that significant outliers can be explained by an inspection of
the architecture and its assessment. Our results of the overlap analysis verify that overlaps
are a frequent problem in architecture descriptions and occured in 45% of the examined
systems.

A literature research revealed that there exist very few suggestions for metrics semanti-
cally similar to the restrictivity metric. No related work had been done on overlap detec-
tion in the context of architecture specifications before this thesis.

7.2 Future Work

In this section, we describe potential enhancements of the implemented algorithms.

Restrictivity

To improve the precision of the restrictivity, a differentiation between package-visible, pri-
vate and public types could be introduced. For two types x, y, it could be checked whether
x can access y — this is only the case when y is public or when they are in the same package
and y is package-visible. Only then would the type pair be counted to the allowed type
pairs.

To retrieve more experience how the metric behaves in practice, an evaluation of a larger
set of systems regarding their restrictivity could be done. It is also recommended to in-
clude developers’ and system architects’ feedback and how they feel the metric fits to their
system.

Overlap Analysis

As we have seen in the case study, an improvement of the algorithmic runtime for the
good case is needed. A profiling analysis of the overlap algorithm shows that almost
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50% of the runtime in the package dk.brics.automaton is spent on the creation of au-
tomata, the other 50% for the conversion to regular expressions. We can reduce the calls
to Automaton() with the following optimisation: As we compare components with each
other, an incremental “checkedComponentsAutomaton” is built. This automaton contains
the union over all codemappings checked until that point. Every remaining component
is checked for overlaps with the “checkedComponentsAutomaton”. If there are none,
then we can in turn add the component’s automaton (and thereby its codemappings) to
the “checkedComponentsAutomaton”. If there exist no overlaps in the architecture, all
codemappings are joined into one large automaton at the end of the loop.

Algorithm 5 architectureHasOverlaps()

Require: allComponents containing all components of the architecture in a list
checkedComponentsAutomaton
for component ∈ allComponents do
componentAutomaton ← buildMatchingAutomatonForComponent(component)
{Creates an automaton for the component as a union over all the include codemap-
pings and a subtraction of the joined exclude codemappings}
overlap← detectOverlap(componentAutomaton, checkedComponentsAutomaton)
if overlap then

return true {The architecture has overlaps, use algorithm 1–4 to find out the exact
overlap}

else
checkedComponentsAutomaton ← checkedComponentsAutomaton ∪
componentAutomaton

end if
end for
return false

This means that for the good case we only have to perform one comparison per
codemapping, namely a comparison to “checkedComponentsAutomaton”. Runtime for
the bad case decreases slightly, as we still have to find out which exact codemapping and
component the overlap is occuring with. This can be achieved with the current algorithm.
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A Appendix

A.1 Reproducing Results

To reproduce the results obtained in this thesis, the following tools are necessary:

• Apache SVN, the software versioning and revision control system used by the Con-
QAT project. Subversion command line client, version 1.6.17.
http://subversion.apache.org/

• Eclipse Modeling Tools, the modeling edition of the Java integrated development
environment Eclipse, version 3.7.
http://www.eclipse.org
The following plugins are used:

– Subclipse, an SVN client integrated into Eclipse.
http://subclipse.tigris.org/update_1.6.x/

– CCSM Development Tools, providing features essential to the development
process, such as the ConQAT Rating Support.
http://www4.in.tum.de/˜ccsm/eclipse_update_site

– Eclipse Test & Performance Tools Platform Project (TPTP), a Java profiler.
http://www.eclipse.org/tptp/

• Apache Ant, the Java-based software build system ConQAT employs.
http://ant.apache.org/

• Checkout of ConQAT trunk
svn co https://svnbroy.informatik.tu-muenchen.de/ccsm/conqat
-root/trunk conqat-trunk

You can the import the projects from the ConQAT trunk into your Eclipse workspace.
Further assistance can be found under http://conqat.cs.tum.edu/index.php/
Start_Developing.

A.2 Affected Change Requests

Integration of this thesis’ artefacts into the codebase of ConQAT has been conducted under
the following Bugzilla change requests:

• Bug 3876: EXCLUDE code mappings from parent components are not regarded in
the OverlapAnalysis
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• Bug 3869: A codemapping containing <.*> throws an IllegalArgumentException
during OverlapAnalysis

• Bug 3812: Integrate ArchitectureOverlapAnalyzerProcessor into ArchitectureAnaly-
sis.cqb

• Bug 3753: Create Conqat analysis for restrictivity metric measurement

• Bug 3742: Show progress dialogue when performing architecture validation

• Bug 3705: Unhandeled Event Loop when typing { into code mapping’s regex field

• Bug 3702: Add statical RegExen overlap analysis

All of the change requests have been reviewed and set to closed, effectively making the
commited changes part of the ConQAT distribution.
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