
How Strict is Your Architecture?

Moritz Beller
Technische Universität München,

Institut für Informatik, D-85748 Garching
beller#in.tum.de

Elmar Jürgens
CQSE GmbH

Lichtenbergstr. 8, D-85748 Garching
juergens#cqse.eu

Abstract

Software architecture has an important impact on
maintainability. One of its key functions is to restrict
dependencies between system components. However,
there are few objective criteria to quantify how well a
given architecture does so. In this paper, we propose
an objective measure for architecture strictness and
report the findings of our case study on architecture
strictness with nine real-world software systems.

1 Introduction

Every software system has an architecture [5]. It com-
prises components, which structure the system into
smaller, coherent parts, and policies, which define the
allowed and denied dependencies between the compo-
nents.

A system architect has to design and maintain the
architecture specification. During the evolution of a
software system, the architecture specification is sub-
ject to change [4].

Architecture conformance analysis detects devia-
tions between the architecture specification and the
architecture present in the source code. Violations of
an intended architecture abound in practice. To re-
move the violations, the system architect often has to
change the architecture specification.

As for other software artifacts, one promising
way to perform quality assurance is to review these
changes. However, it is difficult to rate the impact
of a change, even for an experienced architect with
profound knowledge about the system.

As a consequence, during a review it often remains
unclear how strong the ability of the architecture to
prevent certain dependencies is affected by a change.
Thus, we need a tool which allows us to capture this
aspect of the architecture design. To support the qual-
ity assessor, we propose the architecture strictness ρ
and evaluate its relevance in practice in a case study
with nine real-world industrial systems answering the
following research questions.

2 Architecture Strictness

Architecture strictness ρ is the probability that for
two arbitrarily chosen types a and b (a 6= b), type a
may not access type b in the underlying architecture.1

A value of ρ = 0 characterises a lax system, where
all types can access each other. ρ = 1 characterises a

1In the context of C# and Java, types are classes.

restrictive system, in which every type can only access
itself.

A type pair is a tuple < t1, t2 > of two types. If
t1 may depend on t2 according to the architecture
specification, then the pair is an allowed pair. To
calculate ρ on an architecture, we use the formula

ρ =
Number of Denied Pairs

Number of All Pairs

= 1−
Number of Allowed Pairs

Number of Possible Pairs
. (1)

Figure 1: Example ConQAT architecture with one allowed
policy from App to Lib. The number of classes mapped to
the component is denoted behind the component’s name.

As an example, we calculate ρ on figure 1 by sum-
marising all allowed and then all disallowed type pairs.

Reason Allowed type pairs
Types in same component 2·1+3·2+4·3 = 20
Policy from App to Lib (2 + 3) · 4 = 20
Sub or super type (SpecialApp
and App)

(2 · 3) · 2 = 12

Total 52

Denied pairs are from Lib to App, which are (2 +
3) ·4 = 20 type pairs. Thus, the number of all possible
pairs is 52 + 20 = 72. Using equation 1, we receive
ρ = 1− 52

72 ≈ 0.278.

3 Study Objects and Procedure

We performed a case study on nine industrial systems
developed and maintained by Munich Re. Munich
Re is an international reinsurance company with over
40,000 employees worldwide. The study objects are
nine heterogeneous C#-written projects (cf. table 1).
A prerequisite for projects at Munich Re is to manage
architectural knowledge with a ConQAT architecture
specification.

We implemented an automatic calculation of the
architecture strictness with the open source quality
assessment toolkit ConQAT2. The details of ConQAT
architecture specifications are described in [2, 3]. The

2Available from http://www.conqat.org



System Characteristics System Metrics Strictness Analysis
System Name #Components #Types LoC CC ρ Change Range

System A 41 1,732 322,870 27.8% 0.673 [−0.077; 0.033] = 11.0%
System B 34 499 56,247 12.4% 0.555 [−0.064; 0.064] = 12.8%
System C 37 660 53,155 27.2% 0.799 [−0.069; 0.015] = 8.4%
System D 39 1,072 160,916 6.2% 0.522 [−0.131; 0.116] = 24.7%
System F 98 4,479 328,975 7.2% 0.611 [−0.075; 0.075] = 15.0%
System H 31 2,034 526,513 20.0% 0.462 [−0.116; 0.116] = 23.2%
System I 71 8,436 1,417,578 21.7% 0.724 [−0.124; 0.024] = 14.8%

Table 1: Excerpt of the nine study objects System A-I.

detailed results to the research questions are given in
table 1.

4 Q1: How does ρ differ between sys-
tems?

We found that at a range of 0.462 to 0.799 ρ is well-
spread.

5 Q2: How do low-restrictive archi-
tectures differ from high-restrictive
ones?

We manually examined the architecture of the sys-
tems with the lowest strictness (Systems D and H),
and compared them to System C with the highest
strictness in the study. Systems D and H have two and
three top-level components, while System C has seven
top-level components. Allowed accesses between the
top-level components in Systems D and H lower their
architecture strictness, but are absent in System C.

The results suggest that for a higher ρ the archi-
tecture ought to have several unconnected top-level
components of equal size (like System C).

6 Q3: Does ρ correlate with estab-
lished metrics?

We observed no correlation between LoC (Lines of
Code, including blank lines and comments) and strict-
ness: Pearson’s r = 0.18. However, there is a mod-
erate correlation between CC (Clone Coverage, the
probability that a source code statement is covered
by at least one clone, an indicator of duplication and
quality defects in the code) and strictness at r = 0.64.

Together with Q1 this indicates that strictness is
largely independent of the system size, allowing us
to compare different-sized systems. Generally, a high
strictness equals few allowed dependencies in relation
to the possible dependencies in the system (cf. equa-
tion 1). However, allowing only few dependencies to
other types could hinder the principle of code reuse.
Therefore, in a restrictive systems, code duplication
could be a consequence. This might be a reason why
we observed a moderate correlation between strictness
and CC.

7 Q4: How does the range of atomic
changes to ρ differ between systems?

An atomic change is the removal or addition of an
arbitrary policy in an architecture. The variables
change range and ρ show a strong negative correla-
tion r = −0.74. This supports the interpretation of

Q2: High ρ architectures are designed so that a mod-
ification to the architecture does not change its ρ so
much: An atomic change between small to medium
components never has such an effect on ρ as between
large components (like Systems H and D).

We found that change range in ρ varies. Moreover,
it is negatively correlated with ρ.

8 Related Work

Bouwers et al. [1] propose the Component Balance
Metric to capture the analyzability of an architecture.
The metric is a function of the number of top-level
components and their relative sizes.

Wermelinger et al. [6] perform a case study on the
Eclipse SDK’s architectural changes from version 1.0
to 3.5.1. They compute a series of related metrics,
among which are the coupling and cohesion metrics.

While these are computationally similar architec-
tural metrics, to the best of our knowledge there are
no measures that focus on an explicit reference archi-
tecture and measure its ability to prohibit dependen-
cies.

9 Conclusion

Based on the results of our case study, we found that
strictness differs among systems. We explained out-
liers by manual inspection and extracted some the-
ses for system designs that lead to strict architecture
specifications. Other known metrics do not encom-
pass the architecture strictness. The topic remains an
interesting field for future research: We will make a
larger case study with (open source) non-C# projects
from a different domain. A more elaborate study on
code duplication and its implications on the architec-
ture strictness could clarify the correlation.

References
[1] E. Bouwers, J.P. Correia, A. van Deursen, and J. Visser. Quan-

tifying the Analyzability of Software Architectures. 2011.

[2] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. Mas
y Parareda, and M. Pizka. Tool Support for Continuous Quality
Control. IEEE Software, 25(5):60–67, 2008.

[3] Florian Deissenboeck, Lars Heinemann, Benjamin Hummel, and
Elmar Juergens. Flexible Architecture Conformance Assess-
ment with ConQAT. In ICSE’10, 2010.

[4] M. Feilkas, D. Ratiu, and E. Jurgens. The loss of architectural
knowledge during system evolution: An industrial case study.
In Program Comprehension, 2009. ICPC’09. IEEE 17th In-
ternational Conference on, pages 188–197. IEEE, 2009.

[5] M.W. Maier, D. Emery, and R. Hilliard. ANSI/IEEE 1471.
Systems Engineering, 7(3):257–270, 2004.

[6] M. Wermelinger, Y. Yu, A. Lozano, and A. Capiluppi. Assess-
ing architectural evolution: A case study. Empirical Software
Engineering, pages 1–44, 2011.


