
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Computer Science

Quantifying Continuous Code Reviews

Moritz Marc Beller

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Computer Science

Quantifying Continuous Code Reviews

Quantifizierung kontinuierlicher Code-Inspektionen

Author: Moritz Marc Beller
Supervisor: Prof. Dr. Dr. h.c. Manfred Broy
Advisor: Dr. Elmar Jürgens
Date: October 15, 2013

I assure the single handed composition of this Master’s Thesis, only supported by declared
resources.

München, October 15, 2013 Moritz Marc Beller

Acknowledgements

This thesis is a mere dwarf on the shoulders of giants. It would not have been possible
without the achievements of many a scientist, some of which did not receive their rightful
attribution in their lifetime. I do want to express my sincere gratitude to the persons who
are my personal giants.

My family, Erna, Nora and Friedhelm Beller, for unconditional support at all times.
Thank you so much, I love you!

Thomas Kinnen for many discussions and some of the more ingenious solution ideas,
for Argus-eyed proof-reading of this thesis, for participating in the interrater reliability
study, for eating with me, for walking slowly from time to time and, above all, for being
my dearest friend. What a great time we’ve had!

Fabian Streitel for proof-reading this thesis with unbelievable attention to detail, for
participating in the interrater reliability study, and being a really good friend and host.
Rock on, k!

Martin Waltl for participating in the interrater reliability study and being a really good
friend (besides, thanks for the coffee). Climb to the stars, Martin!

Michael Kanis for participating in the interrater reliability study.
Mika Mantylä, Aalto University, Finland, for releasing a detailed defect classification

scheme.
Roland Schulz, member of the GROMACS team, University of Tennessee, Knoxville

USA, for proof-reading the parts on GROMACS.
Daniela Steidl for her altruistic sharing of code that allowed me to analyze the complete

SVN history of ConQAT.
Benjamin Hummel for Teamscale, for his fruitful and pragmatic ideas and having a great

sense of humor.
Elmar Jürgens for providing this challenging and yet very interesting topic, all the dis-

cussion and, most important, re-arousing my scientific curiosity.
All the great folks at CQSE GmbH for my daily coffee.

vii

Abstract

Code reviews have become one of the most widely agreed-on best practices for software
quality. In a code review, a human reviewer manually assesses program code and denotes
quality problems as review findings. With the availability of free review support tools, a
number of open-source projects have started to use continuous, mandatory code reviews.

Even so, little empirical research has been conducted to confirm the assumed benefits
of such light-weight review processes. Open questions about continuous reviews include:
Which defects do reviews solve in practice? Is their focus on functional, or non-functional
problems? What is the motivation for changes made in the review process? How can
we model the review process to gain a better understanding about its influences and out-
comes?

In this thesis, we answer the questions with case studies on two open-source systems
which employ continuous code reviews: We find that most changes during reviews are
code comments and identifier renamings. At a ratio of 75:25, the majority of changes is
non-functional. Most changes come from a review suggestion, and 10% of changes are
made without an explicit request from the reviewer. We design and propose a regression
model of the influences on reviews. The more impact on the source code an issue had, the
more defects need to be fixed during its review. Bug-fixing issues have fewer defects than
issues which implement new functionality. Surprisingly, the number of changes does not
depend on who was the reviewer.

ix

x

Contents

Acknowledgements vii

Abstract ix

1 Introduction 1
1.1 Motivation . 1
1.2 Introduction of Research Questions . 1
1.3 Outline . 2

2 Fundamentals 3
2.1 Short Terms and Definitions . 3
2.2 Review Process . 3

3 Related Work 9
3.1 A Short History on Reviews . 9
3.2 Formal Inspections . 9
3.3 Light-Weight Reviews . 10
3.4 Review Effectiveness and Efficiency . 10
3.5 Comparison With Other Defect Detection Methodologies 11
3.6 Supporting Tools . 12
3.7 Defect Topologies . 13

4 Study Objects: ConQAT and GROMACS 15
4.1 ConQAT . 15
4.2 GROMACS . 19

5 Analysis of Defects in Reviews 23
5.1 Structure of Case Study . 23
5.2 Types of Review Defects . 23
5.3 Distribution Between Maintenance and Functional Defects 39
5.4 Usage of Code Review Findings . 42
5.5 Threats to Validity . 45
5.6 Discussion . 49

6 Analysis of Influences on Reviews 53
6.1 Research Question . 53
6.2 Study Design . 53
6.3 Study Object . 54
6.4 Study Procedure . 55

xi

Contents

6.5 Results . 59
6.6 Threats to Validity . 63
6.7 Discussion . 64

7 Conclusion 67

8 Future Work 69
8.1 Automated Reviews . 69
8.2 Comparison of File-Based vs. Change-Based Reviews 70
8.3 Further Case Studies . 70

Appendix 71

A Review Defect Classification 73

B GLM – Precise Model Coefficients 81

Bibliography 87

xii

1 Introduction

“Twice and thrice over, as they say, good is it to repeat and review what is
good.” — Plato [PlaBC, 498E]

“A bad review is like baking a cake with all the best ingredients and having
someone sit on it.” — Danielle Steel

In this section, we motivate our research and give an outline of its structure.

1.1 Motivation

Code reviews have become one of the most widely agreed-on best practices to software
quality [CMKC03, BB05, RAT+06]. In a code review, a human reviewer manually as-
sesses program code written and denotes quality problems as review findings. Thanks
to the advent of review support tools like Gerrit, Phabricator, Mylyn Reviews, and GitHub
[Ger, Pha, Rev, Gitb], a number of open-source projects have started to use continuous,
mandatory code reviews to ensure code quality.

However, little empirical research has been conducted to confirm the assumed benefits
of the many proposed theoretical review processes [KK09]. Open questions about contin-
uous reviews include: Which defects do reviews solve in practice? Is their focus on func-
tional, or non-functional problems? Why are changes made in the review process? How
can we model the review process to gain a better understanding about its dependencies
and influences?

In this thesis, we perform two real-world case studies on open-source software systems
that employ continuous code reviews.

1.2 Introduction of Research Questions

In the past, research on reviews was mostly constructional in the sense that it suggested
new review methods or processes [Mey08, BMG10, CLR+02, WF84]. However, real-world
evaluation of code reviews were seldom, and if they were performed, they often counted
the review findings [Bak97, Mül04, CW00, AGDS07, KP09a, WRBM97a], but neglected
their contextual information.Instead of merely counting the number of review findings,
we could generate an in-depth understanding of the review benefits by studying which
types of defects were removed. This leads to our first research question:

RQ 1 Which types of defects do continuous reviews in open-source software systems remove?

1

1 Introduction

A large-scale survey with developers at Microsoft [BB13] found that the expectations
imposed on code reviews and their actual outcomes differ greatly: Programmers think
they do code reviews in order to fix functional defects. However, reality shows most code
review findings are about non-functional or low-level functional aspects [ML09]. Our sec-
ond research question captures whether this observation also holds for our OSS systems.

RQ 2 What is the distribution between non-functional and functional defects?

An inherent property of changes in the review process—be they functional or non-
functional—is the motivation why they were made. Literature on code reviews has con-
tented itself with the diagnosis that some review comments are “false positives”. However,
this is only an incomplete assessment of the motivation for a change, leaving out changes
the author performs without explicitly being told to do. This research question—to the
best of our knowledge—is novel in research on code reviews:

RQ 3 What is the motivation for changes during code review?

The lack of concrete knowledge about reviews makes it difficult for a project manager
to estimate how much effort and how much rework has to go into an issue once it hits
review phase. Some projects allow only reviewed code to be passed on into production.
An inspection of the factors that impact review outcomes would therefore help project
management and project planning, especially in an environment where continuous code
reviews are compulsory.

Intuition suggests a number of influencing factors on the review outcome, which in-
clude: The code churn of the original code, the reviewer, and the author. Additionally, we
assume that to develop a new feature involves writing more new code than to fix a bug.
Thus, we would expect an increased number of review findings for new features, and a
decreased number for bugfixes.

RQ 4 Of which kind and how strong are influences on the outcome of a review?

1.3 Outline

We start our research with a common set of fundamental definitions and conventions about
code reviews. We give an overview over the most important works on reviews, and how
they relate to our research. Next, we describe the study objects used for research questions
1 to 3, ConQAT and GROMACS. In our first case study, we analyse the types of defects
fixed in both systems, and the motivation for their elimination. For our second case study,
we build a model that captures influencing factors on the review process. We evaluate this
model on ConQAT. Concluding our work, we give an overview of our contributions to
research on reviews. Finally, we propose interesting research questions, that resulted from
this thesis, for future work in the area of code reviews.

2

2 Fundamentals

In this chapter, we provide a common terminology of review-related concepts that holds
for the rest of this thesis. First, we give some short general naming conventions, then we
define the review process in detail.

2.1 Short Terms and Definitions

CMS (Change Management System) A software system to collect and administer mod-
ification tasks in the form of issues. Common examples are Bugzilla [Bug], Redmine
[Red], Jira [Jir], or Trac [Pro].

Issue The entity in which tasks are stored in a CMS. Other common names are Change
Request (CR), and Ticket.

OSS (Open-Source Software) “Computer software with its source code made available
and licensed with a license in which the copyright holder provides the rights to study,
change and distribute the software to anyone and for any purpose.” [Lau08]

SLOC (Source Lines Of Code) A software metric which counts the number of program
statement-containing lines, i.e. the lines of code minus blank lines.

VCS (Version Control System) A software system where typically source code is stored
in a repository with a retrievable history. Common examples are CVS [Sys], SVN
[Sub], Perforce [Per], Mercurial [Mer], or Git [Gita].

2.2 Review Process

In this section we define and model our understanding of a review process. Although a
review can take place on any artefact, we define it for the scope of this thesis only on source
code.

From the black box view depicted in figure 2.1, a review is a process that takes as input
an original code version and outputs a resulting code version. The author is the person
responsible for the implementation of the assigned issue. The reviewer assures that the
implementation meets the quality standards of the project. The original code is a work
solely of the original author, whereas in the resulting version the author has incorporated
all suggestions from the reviewer so that both are satisfied with the result.

The review process is organized in rounds, cf. figure 2.2: Every review round takes as
input reviewable code. This is code that the original author deems fit for review. In the
first review round, the reviewable code equals the original code. Then, the reviewer per-
forms the actual code review, supported by the project’s reviewing checklists, style guides

3

2 Fundamentals

Figure 2.1: The Review Process for source code from an artefact-centred black box view-
point. Its input is the original code, and its output—possibly altered—resulting
code. The state of the issue the code change was part of changes in the process.
The diagram uses standard Flowchart semantics.

and tools. An outcome of this is the reviewed code, which includes the reviewer’s sug-
gestions. These may be stored together with the code, or separate from it. A review round
is defined as the sequence of the “Perform Review” process followed by either the “Close
Review” or the “Integrate Review” process: The number of times the yellow-marked pro-
cess is executed in sequence with one of the blue processes in figure 2.2 is a counter for the
number of review rounds.

If the code fulfilled the quality criteria, the reviewer closes the review process. In this
case the resulting code equals the reviewed code from the last review round.

If the code did not meet all quality acceptance criteria, the author is supplied with the
reviewed code for rework. By addressing the reviewer’s suggestions in the reviewed code,
he makes alterations to the code so that he produces again a reviewable code version. The
review process begins anew.

Defect

A defect is the logical entity describing a number of related textual changes, possibly
across files. A defect can be categorized according to the defect topology presented in
the following section. We use the term change synonymous to defect.

Defect Topology

A change (or defect) can have implications in the form of a functional alteration in the
software system, in which case it is a functional defect. If it has none, it is a non-functional
evolvability change. We refine each of these two top-level categorizations further into
several sub-groups, cf. figure 2.3. Structure defects address problems that alter the compi-
lation result of the code. They represent the most difficult to find defect category, as they
require a deep understanding of the system under review. Visual Representation defects
contain all code-formatting issues without an effect on the compilation result. Documen-
tation means problems that are present in program text which has documentary character,
like comments and names. A detailed description of the subgroups is given in appendix A.
[EW98] elaborates on the sub-categories of the functional defects.

4

2.2 Review Process

Figure 2.2: A detailed description of the review process. The diagram uses standard
flowchart semantics.

5

2 Fundamentals

Figure 2.3: The Defect Classification Topology, an adoption from [ML09].

6

2.2 Review Process

Motivation of a Change

The motivation to remove a defect can either be a comment by the reviewer or a self-
motivated idea, meaning that the author made a change without a referring review com-
ment. A review comment might not be addressed for various reasons: It could be wrong,
too time-consuming to correct, or of doubtful benefit. This is a discarded, or, since the au-
thor and the reviewer both have to agree to skip the change, an agreed discarded change.
[ML09] calls these false positives. We believe that the term “agreed discarded” is more
suitable, as there are many other reasons to neglect a review comment besides its being
incorrect. Additionally, the term false positive does not convey the notion that both author
and reviewer have to agree to disregard a change.

7

2 Fundamentals

8

3 Related Work

In this chapter we give an overview over prior works which this thesis builds upon.

3.1 A Short History on Reviews

Code reviews first became subject to scientific examination with Fagan’s famous 1976 pa-
per on formal inspections [Fag76]. But the idea to perform code reviews is even older and
dates back to the first programming pioneers like von Neumann: They considered review
such an essential part of their programming routine that they did not even mention it ex-
plicitly [KM93]. Following Fagan’s groundbreaking paper in 1976, a whole subdiscipline
of Software Engineering dedicated itself to the topic of reviews. The discipline is not fixed
on investigating code reviews, but performs research on reviews of other software engi-
neering artefacts like requirement documents and architectural designs [GW06, MRZ+05].
[KK09] gives an overview over the past and the status quo of research on reviews. They
note a lack of empirical knowledge on code reviews, and suggest that more such studies
be conducted to measure the effects of different theoretical review suggestions. With our
work on quantifying code reviews, we follow their call.

3.2 Formal Inspections

Two categories of code reviews have established themselves over the course of the last four
decades of research on reviews. Heavy-weight Fagan-style inspections, and light-weight
code reviews with an emphasis on productivity. More formal review processes tend to be
called inspection, whereas the other processes are referred to as reviews. While [KK09]
notes some authors try to avoid the term “inspection” and use “peer reviews” instead,
they find no fundamental difference in work on reviews compared to work on inspections.
Orthogonal to this classification, reviews with two participants are sometimes called “pair
reviews”, and reviews with more participants “circle reviews” [WYCL08].

The Fagan inspection mandates a waterfall-like process to develop software, where re-
view and rework phases are imperative at the end of pre-defined stages like design, cod-
ing, or testing. An inspection team comprises four roles, a moderator, a designer, an im-
plementer, and a tester. The Fagan inspection begins with an overview phase, the initial
team gathering, in which the designer describes the system parts to be inspected. He also
hands out code listings and design documents. After that, the team shall meet in “inspec-
tion sessions of no more than two hours at a time” [Fag76], where it discusses errors that
the participants found in the preceding individual preparation. The review meeting’s sole
purpose is to uncover deficiencies, not to correct them. After the inspection session, the
author has to resolve all the uncovered errors from the meeting in the rework phase. In a

9

3 Related Work

follow-up, either the moderator or the whole team—depending on the number and impact
of the changes—makes sure the rework fixes the addressed problems.

3.3 Light-Weight Reviews

Although an initial success with both the research and practitioner community, Fagan in-
spections have several disadvantages that somewhat hindered their continuous and wide-
spread use across organizations: They mandate a plethora of formal requirements, most
notably a fixed, formal reviewing process that does not adapt well to agile development
methods [Mar03]. It made Fagan inspections lengthy and inefficient. Several studies have
shown that review meetings do not improve defect finding [Vot93, MWR98, BLV01, SKI04].
Only one study reported contrary results, stating that review meetings did improve soft-
ware quality [EPSK01]. As a result, the research community developed more light-weight,
adhoc code reviewing processes that better suited environments where test-driven and
iterative development take place [DHJS11, UNMM06, MDL87, Mey08, Bak97, BMG10].

Light-weight review processes are characterised by fewer formal requirements, a ten-
dency to include tool support, and the overall strive to make reviews more efficient and
less time-consuming. These advances allowed many organizations to switch from an oc-
casional to a mandatory, continuous employment of reviews. [Mey08] describe their ex-
periences with continuous light-weight reviews in a development group comprising three
globally distributed programmer teams. Light-weight reviews often leave out the team
meeting, and reduce the number of people involved in the review process to one reviewer.
Adversely, [WRBM97b] found that to exploit the full effect from reviews, the optimal num-
ber of reviewers should be two. In some light-weight processes the author and reviewer
may switch roles, or replace the “asynchronous review process” with a pair programming
session [DHJS11]. In stark violation of the rules of the Fagan inspection, reviewers in
some light-weight processes may make changes to the code themselves. This is the case
in both of our study objects, ConQAT and GROMACS which employ light-weight review
processes.

3.4 Review Effectiveness and Efficiency

Fagan provided data on inspection rates, i.e. how many SLOC without comments could be
reviewed in one hour [Fag76]. The reported values varied greatly from 898 to 130 SLOC.
[KP09b] performed an extensive case study on the review rate. They found that a review
rate of 200 LOC/hour or less was an effective rate for individual reviews. Their research
concentrated on functional defects and did not address maintainability defects. Given a re-
ported 75% of defects in reviews are non-functional [ML09], it stands to question whether
the results are applicable to a modern review process.

Sauer et al. [SJLY00] argue that individual expertise is the most important factor in
review effectiveness, and Hatton [Hat08] supports this claim: In his experiment, he found
stark differences in the defect finding task among individual reviewers.

The ability to understand source code and perform reviews is called “software reading”
[CLR+02]. The initial idea for this came from [PV94], who advocated scenario-based read-
ing. Instead of generic checklists, the scenarios shall provide reviewers with more accurate

10

3.5 Comparison With Other Defect Detection Methodologies

instructions for their review. Several code reading techniques like Defect-Based Reading,
Perspective-Based Reading, Object-Oriented Reading, or Use-Based Reading have been
suggested to educate code readers [WYCL08, CLR+02]. [EW98] depicts a code review pro-
cess based on classic standard checklists. They provide an exemplary checklist for refer-
ence. GROMACS uses a small checklist, while ConQAT has no such document. Reviewers
in either system were not aware of code reading.

Code reading can be seen as an inspection without meetings, introducing light-weight
reviews. [WRBM97b] compare the code reading technique stepwise abstraction to func-
tional and structural testing, a replication study performed “at least four times [...] over
the last 20 years”. Step-wise abstraction means for the reviewer to build a specification
from the code, and then to compare it to the official specification that the code was devel-
oped from. Their findings are that the three techniques are similar with regard to finding
defects, and that they are best used in combination.

3.5 Comparison With Other Defect Detection Methodologies

Here we describe research that compares the effectiveness of code reviews to detect func-
tional defects in a program with that of other quality enhancing techniques, namely test-
ing and pair programming. [KK09] notes that in the past decade, research on reviews has
increasingly taken to developer surveys. In light of this, [BB13] conducted a survey on
developers at Microsoft, inquiring developers’ motivation to do reviews. Their main ex-
pectation was to fix functional defects, but really failure-related comments make up only
a small proportion of the corrected defects [ML09, BB13]. Our results show this is also the
case for ConQAT and GROMACS.

Code Reviews And Testing

Several researchers tried to measure how effective code reviews were in detecting program
faults, and compared them to structural and functional program testing [KK09]. Figure 3.1
shows an overview of the effectiveness researchers have measured. There seems no con-
sensus whether testing or reviewing is more effective: Three papers favoured testing, four
were indifferent, and two favoured inspection. The question whether testing or reviewing
is more efficient received similar diverse answers across papers: Two found testing to be
more efficient, and one inspections. The reported error detection numbers are surprisingly
low, at an average of 0.68 defects per hour for inspections, and 0.10 for testing [KK09].
[RAT+06] states that “absolute levels of effectiveness of defect detection techniques are
remarkably low” and that “on average, more than half the defects remain”.

Code Reviews and Pair Programming

Like code reviews, pair programming is often attributed with higher code quality, fewer
defects, shorter development times, and other beneficial outcomes when compared to in-
dividual programming [BA04, WKCJ00]. Because the two are believed so similar, a sep-
arate review can be replaced by a pair programming session according to some review

11

3 Related Work

Figure 3.1: Comparison of the results of different papers that compare review with test
effectiveness (Source: [RAT+06]).

processes, for example in [DHJS11]. [CW00] contradict this statement, claiming that pair-
programming in their example “simply worked better” than “cod[ing] individually for
awhile, and then review[ing] the changes with their partner”.

Müller [Mül04] investigates whether reviews are an alternative to pair programming. In
his paper, he compares pair programming to individual programming plus a succeeding
review. He argues that simply by knowing that a review will follow, the author produces
better programs. His findings are that reviews can compete with pair programming in
terms of reliability, at a fraction of the costs of pair programming. [Mül05] tries to evaluate
the claims further in two controlled examples with university students.

In a controlled experiment with 295 Java developers [AGDS07] evaluated whether these
hypotheses hold in practice. Their results show that pair programming does not reduce the
time to finish a programming task correctly, nor does it increase the proportion of correct
solution. However, pair programming has a significant 84% increase in the combined
man hours necessary to produce a correct solutions. These results question the practice of
replacing reviews by pair programming.

3.6 Supporting Tools

With the advent of light-weight review processes arose a need for supporting software
tools, preferably integrated into the development IDE [CdSH+03]. [BMG10] introduced
one such tool in 2010 for the Eclipse IDE, ReviewClipse, now Mylyn Reviews [Rev]. Their
idea is for reviewers to perform reviews on a commit directly after it has been pushed
into the VCS. ReviewClipse automatically creates a new “review process”, assigns a fitting
reviewer, and opens a compare viewer for this commit.

A popular review tool is the OSS Gerrit [Ger], started in 2008 by Google. Gerrit “is a
web based code review system, facilitating online code reviews for projects using [...] Git.”

12

3.7 Defect Topologies

Gerrit supports management of the review process with change tickets, and the review
itself with an interactive side-by-side comparison of the old and new code versions. It
allows any reviewer to add inline comments in his web browser. Reviewable code for a
ticket is saved in so-called patch sets. A review round takes place on one patch set. Ger-
rit accommodates the postulate of [WRBM97b] for more circular reviews by encouraging
many reviewers in one ticket. A key feature of Gerrit is that it integrates the changes into
the main repository only after the reviewer expressed his consent to it [Mil13]. In practice,
Gerrit is often used in combination with Jenkins [Jen] because it enables automatic build
and test verification of the changes [Mil13]. This could be considered a first automated
review. Should it fail, no manual reviewer needs to read the error-causing code, which
increases review efficiency in the spirit of light-weight reviews. All the described proce-
dures are part of GROMACS’s review practice, which uses Gerrit. ConQAT has no review
management tool.

For its closed-source projects, Google uses Mondrian, a company-intern tool that was
the trigger for Gerrit’s development. It is similar to Gerrit but highly tailored towards
Google’s development infrastructure [Ken06].

Phabricator is Facebook’s open-sourced tool support for reviews [Pha], developed since
2000 and publicly released in 2011. Github’s review system works with pull requests,
which comprise the code, a referenced issue and possibly review comments [Gitb, Ent]. It
is available freely for OSS since 2008. Both Phabricator and Github’s review system are
web-based and very similar to Gerrit.

Microsoft developed and deployed its own code review tool called CodeFlow since 2011
[BB13]. It offers a unique synchronous collaboration possibility between the author and the
reviewer, as they can work on the review at the same time thanks to an integrated live chat.

3.7 Defect Topologies

Computer scientists have produced an abundance of defect classifications over the years
[Wag08], eventually leading to an IEEE standard in 1993 [53910]. Figure 3.2 visualizes the
development of the different defect topologies. The IEEE standard and its draft were the
basis for two classifications by IBM and HP. Researchers at IBM invented the Orthogonal
Defect Classification (ODC) [CBC+92]. They classify a defect across six orthogonal dimen-
sions, the first of which is the defect type. The defect type is further refined into eight
categories. HP suggested a similar classification across three dimensions, called “Defect
Origins, Types, and Modes” [Gra92].

Case studies evaluated these topologies and found they are difficult to use [WJKT05,
DM03]. This is because they are too general to be helpful and need bespoke tailoring
before they can be used in practice.

Consequently, researchers refined these topologies. [EW98] have shown that their
model, based on IBM’s ODC and with influences from [Hum95], had high interrater relia-
bility. Mäntylä and Lassenius—in search of a defect topology for review findings—based
their topology largely on this empirically validated classification scheme [ML09].

Our own classification builds upon these works, and makes small adjustments to the
evolvability and functional defect sub-categories. Moreover, we removed the false positive
top-level category because the motivation for a change is an orthogonal categorization to

13

3 Related Work

its type. The fundamental difference is that we classify changes, and not review comments
with our topology. [ML09] research which type of defects code reviews find, and what the
distribution between evolvability and functional defects is. Our research is confirmatory
regarding these questions—except for a different understanding of defect—and addition-
ally examines the motivation for changes. Moreover, we build a generalised linear model
on the influences of code reviews. Other researchers in software engineering have already
used generalised or mixed-models, but not to build a model on the influence of reviews
[AGDS07].

Figure 3.2: The development of code defect classifications.

14

4 Study Objects: ConQAT and GROMACS

This chapter gives an overview over the OSS systems that we evaluated in our case studies
in chapters 5 and 6. Table 4.1 gives a short overview of the key metrics of both systems.

4.1 ConQAT

ConQAT is “an integrated toolkit for creating quality dashboards that allow to continu-
ously monitor quality characteristics of software systems. [...] ConQAT is an open-source
project under the Apache 2.0 license and the frequent releases are available as free down-
loads.” [Con] ConQAT is mostly written in Java and uses ant as a build tool. On January
the 30th 2013, it consisted of 4,345 files with a total of 496,404 LOC (260,465 SLOC).

History

Figure 4.1: The number of issues created per year. Data goes until 30th of January 2013.
The total number of created issues is 3094.

15

4 Study Objects: ConQAT and GROMACS

ConQAT was originally developed and hosted at TU München. While the precise start of
the project is unknown, ConQAT release 1.0 shows August the 7th 2007 as its timestamp.
A repository analysis of the VCS dates the first commit to June 17th 2004. The eldest
change request in the CMS, then Bugzilla, dates back to 2005. Figure 4.1 shows the project
activity as the created number of issues in Redmine per year. In the ConQAT source files
the copyright header states “Copyright 2005-2011 The ConQAT Project”, also suggesting
an official start of the project in 2005.

As of 2012, CQSE GmbH [Gmb], a university startup founded by the core developers of
ConQAT, has continued to host, maintain and develop ConQAT, with only minor contri-
butions from externals. There is now a separation between the OSS repository and a closed
source part accessible exclusively to CQSE employees. In this thesis, we have concentrated
on the OSS part, comprising eight years of development history.

Developers

Because of its history as a university project, ConQAT was subject to many different re-
search ideas and authors with strongly diverging backgrounds. Parts of ConQAT were
written during three week phases of mandatory university course projects by a small
group of participating students (n < 15). Even the usual development cycle of the core
developers saw phases of high workload combined with periods when almost no work on
ConQAT took place. Overall, contributors ranged from first-year students with little pro-
gramming experience in their early 20s to senior Java developers with a doctorate degree
and 15 years of programming experience. It was therefore mandatory to set up a devel-
opment process in which the different backgrounds of the developers and the changing
load of development activities would not lead to maintenance issues. To counter these
problems, Deißenböck et al. [DHJS11] invented the LEvD process (cf. section 4.1).

On January 30th 2013, there were 13 active contributors at CQSE GmbH, most of which
were not full-time developers and only seldomly commited at all. The CMS lists 15 active
users, and 185 users in total. An SVN repository analysis yields 52 committers in total,
with a very uneven distribution of commits (minimum 1, maximum 791), cf. figure 4.2:
There is a clear separation between the main developers and sporadic contributors.

Tools

ConQAT uses Redmine as its CMS, and SVN as its VCS. There is no external tool support
for code reviews. Reviewers use a small plugin called “RateClipse”, which displays the
review status of a file. Reviewers perform their work directly in the code in Eclipse, cf.
figure 4.3.

Review Process—The LEvD Process

The Lean Evolution and Development Process (LEvD) is ConQAT’s light-weight review
process, which defines only two roles: An author and a reviewer.

The LEvD-Process is intended for an environment with small to medium-
sized teams with software maintenance, enhancement, and development tasks

16

4.1 ConQAT

Figure 4.2: The number of issues assigned per author. Only four authors are responsible
for over 75% of the issues. This is ConQAT’s core developer team.

17

4 Study Objects: ConQAT and GROMACS

and a fairly high rate of fluctuation. Therefore the process concentrates on code
quality and traceability of activities. — [DHJS11]

The development process in ConQAT is strictly issue-based: LEvD mandates that ev-
ery commit to the VCS contains the ID of the change request this commit belongs to, cf.
listing 4.1. This way it is possible to link changes in the VCS to the issue in the CMS. For
a change to go into the repository, the author has to create an issue in the CMS and the
reviewer must close it according to the following process.

Figure 4.3: Appearance of review findings as TODOs in the Eclipse IDE (Source: [Dei09]).

Listing 4.1: A commit message in ConQAT, referencing change request 4521.

CR#4521:
Refactor common code into base class

A reviewer writes his findings directly into the source code file as program comments,
and then commits the changed file to the VCS [Dei09]. If a finding represents a more high-
level defect (i.e. the author forgot to commit files, a feature does not work or is incomplete,
etc.), a note is made in the CMS instead.

A central idea of LeVD is that the reviewer assesses not only the changes, but the whole
file in which the changes took place. This is a fundamental difference to other review
processes, where only the changeset is reviewed—e.g. in Gerrit, cf. section 3.6.

In the LeVD model, every artefact under quality control is in one of three states at any
given time: Red, Yellow, or Green.

“By default, a newly created artifact is rated RED. The author of an artifact
can change its state to YELLOW to express that he is confident that all quality
requirements are met. With this color change, the author signals that the arti-
fact is ready to be reviewed. A reviewer, other than [t]he authors, performs a
quality review of the artifact and rates it GREEN if all quality requirements are
met or RED if one ore more requirements are violated. [...] If the reviewer rated
the artifacts RED, the author corrects the quality deficiencies and rates the arti-
fact yellow, when he is finished. A GREEN artifact is automatically rated RED

18

4.2 GROMACS

if it is subject to any modification. This way, it is ensured that all modifications
are properly reviewed.” [Dei09]

Figure 4.4 depicts this process. Two deviations from the process have established them-
selves in practice: If the author and the reviewer work together as pair programmers,
they may rate an artefact directly green, omitting the review phase. Additionally, if the
reviewer finds obvious minor defects—a typo in a variable name or a small problem in
the comment—he may alter them without consent from the author. Figure 4.5 shows an
example of this.

Figure 4.4: The LEvD process showing the different states an artefact can be in (Source:
[Dei09]).

Figure 4.5: A trivial change corrected by the reviewer: He removes blank lines in the rate
method’s JavaDoc.

4.2 GROMACS

GROMACS is “a versatile package to perform molecular dynamics, i.e. simulate the New-
tonian equations of motion for systems with hundreds to millions of particles.” [Gro]
GROMACS is an OSS project released under the GNU LPGL. Its primary language is C. In
July 2013, [Ohl] reported 1,449,440 SLOC in C for GROMACS.

History

“GROMACS was first developed in Herman Berendsen’s group, department of Biophysi-
cal Chemistry of Groningen University” [Gro]. According to [Ohl], the first data point in
the VCS dates back to November 1997, but the project already had 74,625 SLOC in C then,
indicating a prior start of the project. The first mention of GROMACS in a scientific paper
dates back to 1995 [BvdSvD95]. The reported 1,449,440 SLOC in C for GROMACS amount

19

4 Study Objects: ConQAT and GROMACS

Figure 4.6: The number of issues assigned per author. Data goes from 1st of November
2011 until 1st of July 2013.

20

4.2 GROMACS

to ∼80% of the total code. Other languages with a significant amount of code include only
Fortran (∼8% of the total code) and C++ (∼6% of the total code). The use of Gerrit for code
review began in August 2011.

Developers

“[GROMACS] is a team effort, with contributions from several current and former devel-
opers all over world” [Gro]. The project pages lists three head authors, one development
manager and twelve current developers. Four people are listed as “Contributors” and
twelve as “Former Developers”. [Ohl] states 44 contributors. Figure 4.6 depicts the num-
ber of issues per author.

Tools

GROMACS uses Redmine as its CMS, and Git as its VCS. Code reviews are performed in
Gerrit.

Review Process

The development process in GROMACS is mostly issue based. For a change to go into the
repository, a change request in the CMS has to be created and properly closed according to
the following review process: GROMACS requires commits to pass code review in Gerrit
before they are allowed to be merged into the VCS. Smaller changes may go in without an
explicit change request, but they still need to be reviewed with Gerrit. [Gro] describes the
reviewing process:

1. https://gerrit.gromacs.org/#q,status:open,n,z shows all
open changes

2. A change needs a +2 review and a +1 verified to be allowed to be submit-
ted. [...]

3. A change is submitted by clicking ”Submit”. This should be done by the
reviewer after voting +2. After a patch is submitted it is replicated to the
main git server.

Do not review your own code. The point of the policy is that at least two non-
authors have voted +1, and that the issues are resolved in the opinion of the
person who applies a +2 before a merge. If you have uploaded a minor fix to
someone else’s patch, use your judgement in whether to vote on the patch +1.

[Gro] lists in its “Guide for reviewing” (spelling mistakes are part of the original):

• First and foremost, check correctness to the extent possible; As portabil-
ity and performance are the most important things (after correctness) do
check for potential issues;

• Check adherance to GROMACS coding standards;

21

https://gerrit.gromacs.org/#q,status:open,n,z

4 Study Objects: ConQAT and GROMACS

• We should try to ensure that commmits that implementing bugfixes (as
well as important features and tasks) get a Redmine entry created and
linking between the commit the Redmine entry is ensure. The linking is
done automatically by Redmine if the commit message contains keyword
#issueID, the valid syntax is explaned below.

• If the commit is a bugfix:

– if present in Redmine it has to contain valid reference to the issue;

– if it’s a major bug, there has to be a bug report filed in Redmine (with
urgent or immediate priority) and referenced appropriately.

• If the commit is a feature/task implementation:

– if it’s present in Redmine it has to contain valid reference to the issue;
[...]

Category ConQAT GROMACS
Development time ≥ 8 years ≥ 18 years
Developers ∼10 active, ∼50 overall ∼16 active, ∼44 overall
Language Java C (mostly)
SLOC 260,465 1,449,440
Code Reviews since 2007 2011
Review mandatory Yes Yes
Tool support RateClipse (Eclipse IDE) Gerrit
Number of Reviewers 1 ≥ 2
Number of Review Rounds [1;∞[[1;∞[

Table 4.1: Comparison of ConQAT and GROMACS.

22

5 Analysis of Defects in Reviews

In this chapter, we conduct a case study on review finding types for two real-world OSS
software systems in practice.

5.1 Structure of Case Study

We repeat the three research questions we are answering in this chapter. Additionally, we
give a detailed outline of the chapter.

RQ 1 Which types of defects do continuous reviews in OSS systems remove?

RQ 2 What is the distribution between evolvability and functional defects?

RQ 3 What is the motivation for changes during code review?

In this chapter, we analyse which types of defects continuous reviews in two OSS sys-
tems identified. We compare the similarities between the different defect distribution pro-
files created for ConQAT and GROMACS. After abstracting the detailed distribution pro-
file, we determine the ratio between top-level maintenance and functional defects, and
put the ratio in context with other studies on different software systems. Next, we focus
on how many of the review suggestions were useful in the evolution of the software. To
conclude the case study, we identify problems that could threaten the validity of the results
and show how we mitigated them. We conducted our case studies based on the guidelines
for empirical research in software engineering [KPHR02].

5.2 Types of Review Defects

The first research question deals with the types of defects solved during reviews. Apart
from answering the research question, we also elaborate in this section on how we col-
lected the data relevant to all research questions in this thesis. RQs 2 and 3 conduct further
research on the data originally collected for RQ 1.

RQ 1 Which types of defects do continuous, light-weight reviews in OSS systems remove?

RQ 1 is confirmatory in nature. To answer it, we set up a modified replication of the
study performed for the second research question in [ML09]. The important difference
between the two studies is that we assess all changes made in the review, whereas [ML09]
assess only the review comments denoted by the reviewer.

23

5 Analysis of Defects in Reviews

Figure 5.1: Study design of RQ 1.

Study Design

Figure 5.1 depicts the sub-steps of the study design. The following sections describe each
of the steps in more detail.

For the evaluation, we chose the projects described in chapter 4. The reason for the
selection of ConQAT was that—since we are part of its development team—we have a
deep domain-specific knowledge on it. Furthermore, the project has a well-documented
history in the VCS and CMS, and uses continuous code reviews.

As ConQAT’s counterpart, we chose GROMACS since we wanted to compare two sys-
tems that employ different review processes and tools (LeVD and Gerrit, respectively),
and because GROMACS had a documented history of performing mandatory code re-
views. This holds only for a small set of OSS projects that we could find. Even if they
claim to use Gerrit, it is often optional, or only for newcomers.

Sampling of Issues

Since we expected many confining variables (cf. 6), we created two samples from the
large ConQAT data set, so that we could compare the two sub-samples later on: The last
one hundred issues, and a randomized sample of issues from the population. The one
hundred most recent issues are representative of the current development of reviews in
ConQAT, whereas the sampled issues should provide an approximation of the general
defects uncovered in ConQAT reviews. For GROMACS it was not feasible to establish two
sufficiently large sample groups because of a much smaller set of available data points. In
total we created three data sets: ConQAT Random, ConQAT (Last) 100, and GROMACS.

Because of the quantity of total relevant issues in ConQAT and GROMACS—over 900
and 250 in ConQAT and GROMACS, respectively—we could not assess all issues. Instead,
we selected a representative sample of issues from both systems. All data sets should
consist of about ∼100 issues. This makes them more comparable among each other. Since
we expected the author of an issue to be one of the most dominant influencing factors in
reviews, we performed a stratified sampling of issues to guarantee equi-frequent authors.

24

5.2 Types of Review Defects

Assessing an Issue

To collect a data set of review changes, we used the following procedure: First, we se-
lected a representative sample of issues from the CMS of either OSS software. Then we
categorized for each issue metadata like the author, reviewer(s) and change type, which
was mostly available via the CMS. Finally, we established whether the issue was suitable
for inclusion in the study (valid), or unsuitable (invalid). We explain the technical details
of this in section 5.2.

If the issue was valid, we could analyse how many review rounds took place. For each
review round we categorized the changes that occurred in this round by a manual source
code comparison. Additionally, we integrated information from the CMS into the review
round analysis.

Example 1 Issue 4387 caused a lot of code churn in ConQAT. While the author still reworked
parts of the reviewed version, the reviewer began with the review of the already reviewable files to
reduce his waiting time. The reviewer and author agreed on this procedure in a note in Redmine.
Later, the rest of the code was made reviewable by the author.

Based on the chronology of commits in the SVN, we would have classified this as two rounds,
although it is per definitionem only one.

Classifying Changes of an Issue

Additional to changes triggered by review comments, we noticed changes in the code
during review rounds which were not based on any of the reviewer’s suggestion. It is clear
that without a review, these changes would not have been made. Therefore, such changes
to the code—be they from the original author or the reviewer—are an outcome of the
review process, and should be included in an analysis of the review process. By including
them, we hope to capture not only the review findings, but all changes triggered by the
review process. Whereas most literature merely classifies the review suggestions—and in
some studies like [ML09] also whether these were realised, or discarded (false positive)—
we base our type classification on a comparison of the actual changes from the reviewable
code at round i and compare it to the reviewable code of the prior round i − 1. This way,
we consider all changes that happened in-between an outcome of the review.

Example 2 A self-motivated, functional change of the code by the author within a review round.

To accommodate for this, we use an adapted version of the defect classification origi-
nally published in [ML09], cf. appendix A. The differences are minor: We included some
clarifications on how to rate certain Java-specific language constructs, and we removed

25

5 Analysis of Defects in Reviews

sub-categories in the resource defect category because we expected these defects to be so
few that further separation would not increase precision. Most important, we removed the
false positive category. We find it is an orthogonal concept to the type of a change: Per def-
initionem, either a code change happened, and then we can categorize this change in the
appropriate category. Or no code change occurred, but then it is also not a false positive.

In LEvD, reviewers may introduce trivial code changes in the reviewed code (cf. fig-
ure 2.2). While this is technically not possible in Gerrit, the reviewer can switch roles with
the author and commit a reviewable code version himself in a subsequent round. We
observed this procedure in GROMACS few times, and usually for the same reasons that
reviewers swapped roles in ConQAT: Some changes are more time-consuming to explain
than to realise, and are unlikely to cause objections from the original author. This because
many code ideas and architecture decisions are still inherently difficult to explain [Bro87],
even with the advent of design patterns [GHJV93]: Sometimes it is more efficient to let
the reviewer, who had the idea for the change, do the rework. This is an idea of the more
laissez-faire light-weight reviews, forbidden in formal review techniques like the Fagan
inspection [Fag76].

Example 3 The reviewer performs a (non-trivial) change in the yellow code, and marks it green.

In contrast to ConQAT, there must at least two (or more) reviewers in GROMACS.

Building the Database

We collected our classfications of the findings with the help of a relational database. For
the design of the database we used the Base component of the free office suite LibreOffice
[Lib]. Figure 5.2 is an exemplary screenshot of our data input mask. We stored every
data set (ConQAT Random, ConQAT 100, GROMACS) in its own database, but kept the
structure of the tables identical across databases.

Study Procedure

Here we describe the technical details of how we carried out the study design.

Sampling of Issues

Since we sampled on a per issue basis, we needed back-references from the VCS to the
CMS. In ConQAT and Gerrit, the commit message in the VCS references the issue ID from
the CMS.

26

5.2 Types of Review Defects

Figure 5.2: Database input mask showing issue 2893. The mask is divided into two parts:
The general per-issue information in the fields ISSUE, REVIEWER, AUTHOR,
ISSUE TRACKER and INVALID, and the per-review-round fields which repre-
sent the categories from appendix A.

We admitted only committers with a substantial amount of assigned issues into the sam-
pling phase: Novices in the code have to adapt to the project first, which likely leads to bias
in the distribution of the review categories in their issues: For example, we observed an
increased number of findings and review rounds during their familiarisation phase with
ConQAT. Therefore, we excluded all authors with fewer than ten assigned issues. Next,
we excluded all issues that did not have an assigned reviewer in the CMS. Out of all the
issues assigned to the remaining authors, we randomly picked ten issues as samples per
author.

Sampling Tool To assist us in the sampling process for the data sets ConQAT Random
and GROMACS, we developed a program for the automated randomly stratified sampling
of issues. We developed a Java program that is able to read in data from the REST APIs of
Redmine, Teamscale, and Gerrit. It gathers this data and unifies it in one coherent model.
Based on our filtering preconditions and using Java’s time-seeded random generator, the
tool sampled the issues which we then manually assessed.

ConQAT Our observation period starts with the first issue in the CMS in 2005 and ends
January 30th 2013 00:00, the last data point in our frozen SVN snapshot. An analysis of
ConQAT showed that links between commits in the VCS and issues in the CMS have only
been made since 2007. Our observation period is limited on the lower end by the intro-
duction of a reference in the commit message to the issue. Some issues do not change code
at all. Consequently, no code review is performed on these issues. Therefore, we excluded

27

5 Analysis of Defects in Reviews

issues that do not have associated changed Java files in ConQAT. Furthermore, we are only
interested in closed issues: If a review was performed on these issues, it must be finished
by now. Under these constraints the number of suitable issues in ConQAT reduces from
3094 to 919, cf. figures 4.1 and 5.3.

Figure 5.3: The number of issues created per year that have changed files associated with
them. Data goes until 30th of January 2013. The total number of created issues
is 919.

ConQAT has 13 authors fulfilling these preconditions, for which we sampled 130 dif-
ferent issues in ConQAT Random. For ConQAT 100, we looked at the most-recent one
hundred issues after the filtering process.

GROMACS GROMACS developers started to use code reviews with the introduction of
Gerrit on August the 3rd 2011. To compensate for an initial learning phase, our observation
periods starts on November the 1st 2011. It ends on July the 1st 2013. Additionally, we only
considered closed issues. This amounts to 293 issues in the observation period.

GROMACS has eight authors fulfilling our preconditions, for which we sampled 80
different issues.

In GROMACS, the review system Gerrit sits between the CMS and VCS. Particularly,
for each issue that involves commits to the SVN a review ticket in Gerrit has to exist.
However, one review ticket may reference several issues in the VCS. Therefore, two (or
more) sampled issues may link to the same Gerrit ticket. In these cases, we assessed the
Gerrit ticket only once for the first sampled issue, and for each other issue, referenced the
first issue. This does not make the issues invalid, since a review was performed, but it sets
the number of findings for the first issue to the accumulated number of all Gerrit tickets,

28

5.2 Types of Review Defects

and for the later issues to zero, which is arguably not accurate.

Assessing an Issue

In the classification process of the review changes we used three tools: Our own Eclipse
Plugin, the Teamscale Web UI for evaluation of ConQAT, and the Gerrit Web UI for GRO-
MACS.

Teamscale Teamscale is “a quality analysis suite for continuous software quality con-
trol” [Tea]. At the time of writing this thesis, Teamscale was under development at CQSE
GmbH: No stable version had yet been published. However, it allowed the analysis of
ConQAT’s VCS repository, SVN, with a stringent history. Usually, if the commiter renames
a file, this is handled as a delete and then an add operation in SVN. Even though the file
contents may not differ, it is not possible to trace the origins of the newly added file to the
old file. Teamscale provides mechanisms to follow the file’s history across such operations.
A standard SVN log analysis would not have been sufficient, as ConQAT’s SVN includes
many of these operations, leaving us with an incomplete history. If the review process of
an issue stretches over long periods of time, it is likely to encounter “untraceable” SVN
operations. Therefore, we configured a Teamscale instance with a repository mining of
ConQAT’s source code. It gave us a continuous history of the project.

Teamscale provides a Web interface with basic support for source code and review com-
ment assessment. It also provides a REST-ful web API, which we used as the data source
for our tools.

Eclipse Plugin Our Eclipse Plugin, which integrated with Teamscale, allowed us to con-
veniently perform difference analyses on the ConQAT source code per review round. As
figure 5.4 shows, both the “Perform Review” and the “Integrate Review” process (cf. fig-
ure 2.2) can comprise many commits. We are only interested in the change set at the end
of each of the two processes, and not which changes occurred in-between the process (and
might have been fixed by a later commit in the same sub-process). The commit-based diff
offered by the Teamscale Web UI is often not sufficient if a sub-process consisted of more
than one commit, nor suited for the efficient comparison of many files.

Our tool expects as input the issue number and two revision numbers corresponding to
the start and end of a sub-phase of the review process. The plugin then requests all files
touched by the specified issue for the given revisions from the Teamscale Server. It stores
the files locally in the Eclipse workspace in their original tree structure. This enables us to
use Eclipse’s Compare View to conveniently compare the two code versions from before
the rework began to after the rework .

From the Teamscale Web UI we identify the revisions of the end of the review and re-
work processes, and compare each succeeding process artefact to the next. In formal re-
views, only the reviewed and reviewable code of one round would need to be compared,
but in ConQAT we need to monitor for changes from the reviewable to the reviewed code,
cf. section 5.2 for an explanation.

29

5 Analysis of Defects in Reviews

Figure 5.4: A succession of the first six commits for issue 4384 as displayed by the Team-
scale Web UI. The first two commits by beller (rev. 40252, rev. 40296) belong to
the original code writing process. The first review round ends with one review
commit, rev. 40313. The integration of this review is done in one commit as
well, rev. 40550. The next review process consists of two commits: rev. 40560
and 40561.

30

5.2 Types of Review Defects

Example 4 For figure 5.4, we start with the comparison of rev. 40296—the original code—and
40313, which contains the review findings and changes of the first round. Code changes are clas-
sified as according to the defect types described in appendix A in the first review round. We then
download rev. 40550, and compare this reviewable version with rev. 40313 to see how the author
eliminated the detected problems. The second round’s review ends with rev. 40561, which we
compare to 40550 to see potential changes by the reviewer.

Classifying Changes Within an Issue

When we categorized the defects of an issue in the program code, we had the definitions
of the defect categories and an overview graph as printed paper sheets in front of us.
Many defects were quick to spot because they addressed and removed a finding noted by
a reviewer.

However, difficulty arose when the changes were self-motivated, and involved large
portions of code. It was often not evident which set of textual changes formed a logical,
self-contained change unit with regard to the defect classification scheme: The scope of a
change was not easy to determine.

Example 5 How many self-contained changes happened from left to right?

Furthermore, we found it difficult to infer from only the comparison of two source code
versions which category an undocumented change belonged to: In rare cases, it was diffi-
cult to assess whether the change had functional implications, or not.

Example 6 Although the scope of this change is easy to determine, it is difficult to rate the defect
as functional or non-functional without a deep knowledge of Java and the underlying system.

One code change is rated in precisely one category. If we thought more than one defect
category for one change suitable, we used the most precise fitting, which explained best
why a change was conducted.

31

5 Analysis of Defects in Reviews

Example 7 If a variable’s name resultGood is fine for itself, but all other variable names in
the class begin with an adjective—such as badResult—two categorizations for the change from
resultGood to goodResult are thinkable: A Naming Defect, or a Consistency Defect. In these
cases, we opted for the Consistency Defect because the rename operation was performed out of
consistency reasons, and not because the original name was bad per se.

While we tried to rate changes as fine-granular and precise as possible, we preferred
to rate larger changes with a recognizable functional change in the program as one larger
functional defect. If we could rate a defect as either evolvable or functional, we preferred
the functional category: In our understanding, the effects of a functional change in the
program outweigh evolvability issues. [ML09] argues similarly: “If the researcher was not
sure and it was not possible to ask the author of the code, a functional defect class was
chosen.”

Idiosyncrasies of ConQAT and GROMACS

Two subtle peculiarities are the result of different reviewing processes in ConQAT and
GROMACS that hinder the comparison of the two. In this section, we explain their nature,
and how we resolved them to make ConQAT and GROMACS as comparable as possible.

Gerrit allows to review and alter all parts of a commit, which is not possible in LeVD
style reviews, since the review is not performed on a commit, but on a file basis. This
allows Gerrit users to find a complete new findings category E META, which cannot be
detected and corrected with LeVD. Examples for defects in this category are typos in the
commit message and more substantially the addition and the correction of referenced is-
sues. This leads to a better traceability between the CMS and VCS, which increases main-
tainability of the project. Since we do not posses such findings for ConQAT, we left the
E META category out in the comparison.

Example 8 GROMACS review of a commit message, showing a E META defect.

F BUILD denotes build failures detected by the automated Jenkins build job in Gerrit.
Such failures do not show up in ConQAT because it uses a mailinglist-based blame system

32

5.2 Types of Review Defects

for reporting broken builds. As a reaction to a blame mail the original author usually issues
a fixing commit within hours of his breaking changes. The time it takes him to fix the build
is typically much shorter than the time until the review starts. Therefore, in ConQAT, build
fixes will normally go unnoticed and do not show up as an extra review round, as they do
in Gerrit: The number of review rounds in GROMACS is potentially higher, with a smaller
findings count—for each F BUILD defect, Gerrit automatically creates a new review with
the pseudo-reviewer “Jenkins” with only one defect in it. To make GROMACS’s classifi-
cation scheme compatible with ConQAT’s we left out the F BUILD catgeory in the further
analyses of our case study. Since we are assessing the benefits of manual code reviews in
this thesis, the number of automated building failure findings is not relevant.

Example 9 The automated Jenkins build integration in Gerrit recognizes a broken build after up-
loading a patch set and warns the author Erik Lindahl of this. We can see four review rounds and
three F BUILD defects in this example.

Results and Implications

Figures 5.5 to 5.7 show the number of absolute changes per category for our evaluation of
ConQAT Random, ConQAT 100 and GROMACS. The graphs show on the x axis abbrevi-
ated names of the categories from appendix A. The sub-categories of the top-level category
evolvability are printed in shades of blue, and the functional defects in orange. On the y
axis the absolute number of defects found in each category is plotted. In the following, we
interpret the results from these graphs.

Invalid Issues

We could not include all of the sampled issues in this study: Some did not undergo the
complete review process—for example, the review was abandoned in the process—, the
review was done as part of another issue, which we did not sample, the issue contained
large portions of code changes in closed-source repositories, or the issue was so compli-
cated with so many committers that we couldn’t fully comprehend the proceedings. Ad-
ditionally, some reviews were not fully performed within our observation period, but we
sampled them nevertheless, since we could not a-priori safely determine the date an issue

33

5 Analysis of Defects in Reviews

0

5

0

1

0
0

1

5
0

2

0
0

2

5
0

E_D_T_NAMING

E_D_T_COMMENTS

E_D_T_DEBUGINFO

E_D_T_OTHER

E_D_L_ELEMENTTYPE

E_D_L_IMMUTABLE

E_D_L_VISIBILITY

E_D_L_ELEMENTREFERENCE

E_V_BRACKETUSAGE

E_V_INDENTATION

E_V_BLANKLINEUSEAGE

E_V_LONGLINE

E_V_SPACEUSAGE

E_V_GROUPING

E_S_O_MOVEFUNCTIONALITY

E_S_O_LONGSUBROUTINE

E_S_O_DEADCODE

E_S_O_DUPLICATION

E_S_O_COMPLEXCODE

E_S_O_STATEMENTISSUES

E_S_O_CONSISTENCY

E_S_O_OTHER

E_S_S_SEMNATICDUPLICATION

E_S_S_SEMANTICDEADCODE

E_S_S_CHANGEFUNCTION

E_S_S_USESTANDARDMETHOD

E_S_S_NEWFUNCTIONALITY

E_S_S_MINOR

E_S_S_OTHER

F_R_DATAANDRESOURCE

F_C_CHECKFUNCTION

F_C_CHECKVARIABLE

F_C_CHECKUSERINPUT

F_I_FUNCTIONCALL

F_I_PARAMETER

F_L_COMPARE

F_L_COMPUTE

F_L_WRONGLOCATION

F_L_ALGORITHMPERFORMANCE

F_L_OTHER

F_LA_COMPLETENESS

F_LA_GUI

F_LA_CHECKOUTSIDECODE

F_SUPPORT

Number of Findings

C
a

te
g

o
rie

s

Figure
5.5:The

defect
distribution

profile
(num

ber
of

absolute
findings

in
each

category)
for

100
random

ly
sam

pled
C

onQ
A

T
issues.Totalnum

ber
ofdefects:892.

34

5.2 Types of Review Defects

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

E_D_T_NAMING

E_D_T_COMMENTS

E_D_T_DEBUGINFO

E_D_T_OTHER

E_D_L_ELEMENTTYPE

E_D_L_IMMUTABLE

E_D_L_VISIBILITY

E_D_L_ELEMENTREFERENCE

E_V_BRACKETUSAGE

E_V_INDENTATION

E_V_BLANKLINEUSEAGE

E_V_LONGLINE

E_V_SPACEUSAGE

E_V_GROUPING

E_S_O_MOVEFUNCTIONALITY

E_S_O_LONGSUBROUTINE

E_S_O_DEADCODE

E_S_O_DUPLICATION

E_S_O_COMPLEXCODE

E_S_O_STATEMENTISSUES

E_S_O_CONSISTENCY

E_S_O_OTHER

E_S_S_SEMNATICDUPLICATION

E_S_S_SEMANTICDEADCODE

E_S_S_CHANGEFUNCTION

E_S_S_USESTANDARDMETHOD

E_S_S_NEWFUNCTIONALITY

E_S_S_MINOR

E_S_S_OTHER

F_R_DATAANDRESOURCE

F_C_CHECKFUNCTION

F_C_CHECKVARIABLE

F_C_CHECKUSERINPUT

F_I_FUNCTIONCALL

F_I_PARAMETER

F_L_COMPARE

F_L_COMPUTE

F_L_WRONGLOCATION

F_L_ALGORITHMPERFORMANCE

F_L_OTHER

F_LA_COMPLETENESS

F_LA_GUI

F_LA_CHECKOUTSIDECODE

F_SUPPORT

Number of Findings

C
a

te
g

o
ri
e

s

Fi
gu

re
5.

6:
T

he
de

fe
ct

di
st

ri
bu

ti
on

pr
ofi

le
(n

um
be

r
of

ab
so

lu
te

fin
di

ng
s

in
ea

ch
ca

te
go

ry
)f

or
th

e
m

os
tr

ec
en

t1
00

C
on

Q
A

T
is

su
es

.
To

ta
ln

um
be

r
of

de
fe

ct
s:

36
1.

35

5 Analysis of Defects in Reviews

0

5

1

0

1

5

2

0

2

5

3

0

3

5

4

0

4

5

5

0

E_D_T_NAMING

E_D_T_COMMENTS

E_D_T_DEBUGINFO

E_D_T_OTHER

E_D_L_ELEMENTTYPE

E_D_L_IMMUTABLE

E_D_L_VISIBILITY

E_D_L_ELEMENTREFERENCE

E_V_BRACKETUSAGE

E_V_INDENTATION

E_V_BLANKLINEUSEAGE

E_V_LONGLINE

E_V_SPACEUSAGE

E_V_GROUPING

E_S_O_MOVEFUNCTIONALITY

E_S_O_LONGSUBROUTINE

E_S_O_DEADCODE

E_S_O_DUPLICATION

E_S_O_COMPLEXCODE

E_S_O_STATEMENTISSUES

E_S_O_CONSISTENCY

E_S_O_OTHER

E_S_S_SEMNATICDUPLICATION

E_S_S_SEMANTICDEADCODE

E_S_S_CHANGEFUNCTION

E_S_S_USESTANDARDMETHOD

E_S_S_NEWFUNCTIONALITY

E_S_S_MINOR

E_S_S_OTHER

E_META

F_R_DATAANDRESOURCE

F_C_CHECKFUNCTION

F_C_CHECKVARIABLE

F_C_CHECKUSERINPUT

F_I_FUNCTIONCALL

F_I_PARAMETER

F_L_COMPARE

F_L_COMPUTE

F_L_WRONGLOCATION

F_L_ALGORITHMPERFORMANCE

F_L_OTHER

F_LA_COMPLETENESS

F_LA_GUI

F_LA_CHECKOUTSIDECODE

F_SUPPORT

F_BUILD

Number of Findings

C
a

te
g

o
rie

s

Figure
5.7:The

defect
distribution

profile
(num

ber
of

absolute
findings

in
each

category)
for

the
sam

pled
issues

in
G

R
O

M
A

C
S.

Totalnum
ber

ofdefects
(w

ithout
F
B
U
I
L
D

and
E
M
E
T
A):216

(164).

36

5.2 Types of Review Defects

had been closed. Since we had a sufficiently large sample at hand, we did not include such
dubious issues in our case study.

ConQAT Random had 100 valid issues out of 128 issues in total (78.1%). ConQAT 100
had 89 valid issues out of 100 issues in total (89%). GROMACS had 60 valid issues out of
80 issues in total (75.0%). The percentage of valid issues is similar across systems, so we
do not assume a biased preselection of the sampled issues.

In order to avoid bias on a per-author level, we took care that the number of invalid
issues per author was not higher than three, so as to not distort the final results because
of fewer analysed defects from a certain author. This was only the case for one author in
ConQAT Random (who had seven invalid issues), for whom we re-sampled issues.

Number of Defects

Our first distinctive observation is the number of absolute defects per sample. Although
sample sizes are roughly comparable (|ConQAT 100| is 0.91 × |ConQAT Random|, and
|GROMACS| is 0.63 × |ConQAT Random|), there were absolutely fewer defects in both
ConQAT 100 and GROMACS: Based on the number of findings from ConQAT Random,
we would expect to find around 810 defects in ConQAT 100, whereas we found only 361
(44% of the expected value). In GROMACS we would expect 558 defects, but found only
164 (29% of the expected value). Our intuition during the manual assessment of the GRO-
MACS reviews is in alignment with this observation: Even though more reviewers are
involved in GROMACS, the attention to detail seemed much lower compared to ConQAT.

A related distinctive feature is the deviating number of defects per review. Figure 5.8
illustrates this observation: ConQAT Random has a range from 0 to 208 defects per issue
maximally. Its median is 2 defects per issues, its average 8.81. 75% of issues have between
0 and 6 defects. ConQAT 100 has a range from 0 to 110 defects per issue maximally. Its
median is 0 defects per issue, its average 4.00. 75% of issues have between 0 and 2 defects.
GROMACS has a range from 0 to 93 defects per issue maximally. Its median is 0 defects
per issue, its average 3.24. 75% of issues have between 0 and 2 defects.

Some issues have extreme outliers, their defect count being orders of magnitude higher
than the reported median or average for each system. An explanation could be that most
issues in the CMS are relatively small and well-split up. However, sometimes a really
large change request with lots of work arises. The possibility that in both ConQAT and
GROMACS the review of one issues is sometimes performed in the scope of another issue
could also contribute to these high values: The highest outliers for both systems contained
references from several issues.

Defect Types

Across all systems, the defect category with the highest occurrence rate is
E D T COMMENTS. Recent research has found that comments in the code are often trivial,
difficult to understand, or outdated [SHJ13]. Our results show that reviews lead to re-
vised comments, which indicates that reviews could be a mechanism to counter problems
associated with or caused by comments.

The second prominent defect category are E D T NAMING defects. In the ConQAT sam-
ples, there are 25% to 50% fewer NAMING than COMMENTS defects, while this is still by far

37

5 Analysis of Defects in Reviews

ConQAT Random ConQAT 100 Gromacs

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

2
0

0
2

2
0

ConQAT Random ConQAT 100 Gromacs

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure 5.8: Box-and-whisker plots for the number of defects found per issue in the three
samples. The plot on the right is a zoomed-in version of the left-hand side plot
to better illustrate the distribution in the range between 0 and 40 defects per
issue.

the second highest value for any finding category. In GROMACS, NAMING defects account
for far fewer defects than COMMENTS defects, rouhgly 80%, and they are only the third
largest category by a small margin to the F CHECKVARIABLE defect.

In GROMACS no defects from the E D L * sub-category were fixed. We can explain this
with the fact that GROMACS is a C system, and C does not support these object orien-
tation concepts. Furthermore, no E V BRACKETUSAGE defect was discovered. This could
be indicative of two circumstances: Either all GROMACS developers use brackets consis-
tently, or the review guidelines do not mandate a consistent bracket usage. ConQAT style
guidelines require the use of curly brackets even in one liners where they would be syn-
tactically redundant. Consequently, reviewers found some violation of this rule. ConQAT
on the other hand has very few E V * defects because the automatic code formatter takes
care of most of those.

A larger portion of defects is solved in the E S ORGANIZATION and E S SOLUTION sub-
categories in both ConQAT samples than in GROMACS. Defects in this category typically
require an indepth examination of the reviewable code, as it is not trivial for a reviewer
to detect when code is dead or duplicated, or when a standard method could be used in-
stead. Together with the observation that GROMACS does have a similar amount of triv-
ial changes like E D T NAMING, we could reason that ConQAT has more in-depth reviews
than GROMACS. This holds under the assumption that the quality of the original code in

38

5.3 Distribution Between Maintenance and Functional Defects

GROMACS is similar to ConQAT—and we have no indication to assume otherwise.

Similarity of Review Distributions

0 50 100 150 200

0
1
0

2
0

3
0

4
0

5
0

6
0

Q−Q Plot of ConQAT Random vs. ConQAT 100

ConqatRandom

C
o

n
q

a
t1

0
0

0 50 100 150 200

0
1
0

2
0

3
0

4
0

Q−Q Plot of ConQAT Random vs. Gromacs

ConqatRandom

G
ro

m
a

c
s

Figure 5.9: Q-Q Plots for the number of defects per category show the relative similarity of
the defect distributions.

We have already established that the defect distributions for our three samples is similar
by “overlaying” the relative distribution profile of the three samples. However, this is only
a rough estimator of how close the distribution are.

To answer the question precisely, we plot Q-Q diagrams of Conqat 100 versus Conqat
Random and Gromacs versus Conqat Random in figure 5.9. Essentially, the nearer the
data points lie to the inscribed diagonal, the better the fit between the two distributions
compared in the diagram. The theory of Q-Q diagrams is further explained in [WG68].
As we can see, both distributions are very similar to ConQAT Random. A comparison be-
tween the normal distribution and ConQAT Random shows a significantly greater offset,
cf. figure 5.10. Therefore, our manual observation from prior chapters seems justified: The
detailed defect distributions between the three samples is very similar.

5.3 Distribution Between Maintenance and Functional Defects

Siy and Votta report a 60:20 distribution of evolvability to functional defects [SV01].
Mäntylä and Lassenius confirm this ratio for two other projects, reporting distributions
of 71:21 and 77:13 [ML09]. However, El Emam and Wieczorek [EW98] and R. Chillarege
et al. [CBC+92] report contradicting distributions, stating a ∼50:50 distribution for two
systems and a ∼20:80 ratio for one system, respectively. Thus, further research on the
distribution of evolvability and functional defects is needed.

39

5 Analysis of Defects in Reviews

−2 −1 0 1 2

0
5
0

1
0
0

1
5
0

2
0
0

Q−Q Plot of ConQAT Random vs. Exemplary Normal Distribution

rnorm(44)

C
o
n
q
a
tR

a
n
d
o
m

Figure 5.10: Q-Q Plots for the number of defects per category show the relative dissimilar-
ity to an exemplary normal distribution of defect counts.

RQ 2 What is the distribution between evolvability and functional defects in the OSS systems from
RQ 1?

This study is a replication of the first study performed in [ML09], and therefore confir-
matory in its nature. To answer the research question, we use the data set generated for RQ
1 and classify the sampled fine-granular defects into the two top-level groups: Evolvability
and functional defects. Since we re-used the dataset,the study design and procedure from
section 5.2 apply to RQ 3 as well: Most important, in order to be able to compare it with
ConQAT, we left out the E META and F BUILD categories from the GROMACS dataset.

Results and Implications

Figure 5.11 presents the ratio of evolvability and functional defects in our three data sets,
and puts it in context with the values reported by [ML09]. Since we do not have a false
positive category, we took the ratios from [ML09] sans false positives. As the graph shows,
the resulting ratios among the four systems are relatively near each other, within a range
of ten percentage points.

Figure 5.12 illustrates the difference in distributions when we include E META and
F BUILD defects in GROMACS: Because build failures are frequent, the distribution is
displaced in favour of functional defects. We would expect something similar for Con-
QAT, could we count build failures. However, we reason that these automatic findings are
irrelevant for the quantification of manual code reviews.

In ConQAT Random we found more evolvability defects than in all other samples, 5
percentage points above 75%. ConQAT 100 hits the 75:25 ratio almost exactly. GROMACS
has a slightly lower amount of evolvability defects at 68.9%. The uniformity of the result

40

5.3 Distribution Between Maintenance and Functional Defects

Figure 5.11: The ratio of evolvability and functional defects plotted against each other in
the three samples from our case study, and the two samples from [ML09] (ex-
cluding false positives).

41

5 Analysis of Defects in Reviews

Figure 5.12: A comparison of the distributions of the evolvability and functional defects in
GROMACS without and with E META and F BUILD defects.

is particularly interesting, as ConQAT and GROMACS are written in a different program-
ming languages and development models by other people with strongly diverging review
processes.

5.4 Usage of Code Review Findings

The effectiveness of reviews is often debated [SV01, WRBM97b, KP09b]. However, besides
cost models, there has been little research on how many of the review findings lead to
changes in the system, and how many are disregarded. Additionally, changes might be
made by the author based on no particular review comment. If many or most of the review
findings are discarded, we could assume that reviews are an inefficient approach to quality
control.

RQ 3 What is the ratio between accepted, self-motivated and disregarded review changes in the
systems from RQ 1?

This study is exploratory in nature. Since we re-used the dataset, the study design and
procedure from section 5.2 apply to RQ 3 as well.

42

5.4 Usage of Code Review Findings

Study Procedure

To answer this research question, we use the data set generated for RQ 1 and classified each
change from RQ 1 as either triggered by a review comment, self-motivated or discarded
(cf. chapter 2 for a detailed explanation on the motivations for a change).

In our study we saved how many findings of which type happened, for each review
round individually. We do no treat individual changes as a database entry of their own.
This would have allowed us to say exactly which types of findings were discarded and
which were self-motivated. However, we did not notice abnormalities in the distribution
of discarded or self-motivated changes during our manual assessment of the findings (e.g.
we did not notice unproportionally many self-motivated changes were naming defects or
similar). As we do not expect deviations from a proportionate distribution, we left out
the time consuming tracking and modelling of individual changes in the data acquisition
phase.

In contrast to RQ 1, where we had sometimes difficulties to find the correct defect cat-
egory for a change, we could determine the motivation for a change easily most times.
This was because the majority of changes was triggered by a review comment. Exam-
ple 10 shows a typical review-triggered change. If the author didn’t like a suggestion, he
usually contradicted as a follow-up, making the determination of the “agreed discarded”
group easy in most cases. Example 11 demonstrates this in the source code. Self-motivated
changes had the same problem as RQ 1 with regard to scope, but once changes were iden-
tified, their motivation was relatively obvious. Examples 2, 3 and 6 show self-motivated
changes from the reviewer.

Apart from these content-related reasons, we only had three categories to choose from,
which makes it easier to find the correct category. Additionally, the three categories are
orthogonal with regard to their definition.

Example 10 E D VISIBILITY defect triggered by a review comment.

43

5 Analysis of Defects in Reviews

Example 11 The reviewer proposes an E STRUCTURE SOLUTION OTHER change. The author does
not agree and shortly explains his reasons. In the next round, the reviewer accepted to leave the
file as-is, and therefore the change was discarded in unison.

Results and Implications

Figure 5.13: The motivation for changes in the ConQAT, ConQAT 100 and GROMACS.

44

5.5 Threats to Validity

Figure 5.13 depicts the results of this study. All three samples show two uniting features:
The changes triggered by a review comment form the main group of recognized defects.
Of the number of actual changes in the system, they make up 87% of changes for ConQAT
Random, 89% for ConQAT 100 and 77% for GROMACS. The percentage of self-motivated
or discarded changes is considerably lower.

The number of realised changes can be modelled as the sum of triggered and self-
motivated changes. Thus, we have 94% realised changes for ConQAT Random, 93% for
ConQAT 100 and 79% for GROMACS. The percentage of rejected changes was 6 to 7% for
ConQAT systems, and 21% for GROMACS.

We can conclude from these numbers, that a majority of review suggestions is realised.
Therefore, reviews appear to make sense. Yet, self-motivated changes remain an important
part of changes in light-weight reviews.

5.5 Threats to Validity

We describe factors that threaten the validity of our case study on defect types, the basis
for RQ 1 to 3, and show how we mitigated them.

Internal Threats

Internal threats are factors that could affect our measurements, but which we did not con-
trol for. There are several internal factors that could threaten our results, most of which we
could mitigate.

1. Hawthorne Effect
The Hawthorne Effect refers to the phenomenon that participants of case studies per-
form above average because they know they are being watched [Ada84]. We could
rule out this effect because we started our studies posteriori: Neither the authors nor
reviewers from ConQAT or GROMACS knew we would later undertake this study
when they made their contributions.

2. Biased Sampling
Thanks to stratified randomized sampling, we captured a representative sample of
ten issues per regular author. This way, no single author has an over-proportional
impact on the result. Particularly, we exclude issues from authors that had only mi-
nor influences on the systems. In ConQAT, for example, we did not want to have
students from university internships distort the results: They are usually inexperi-
enced and the code either never goes into production at all, or, if it does, the ConQAT
core team will usually change it heavily.

3. Too Few Sampled Issues
At around 100 issue per sampling group, one could argue that we did not observe
a large enough sample size: It could be that we do not have enough issues to gain
a representative sample of the issues. However, as a comparison of the ConQAT
Random and ConQAT 100 samples shows, key metrics like the top-level category
ratio and the Q-Q plots are very similar, which speaks strongly against this assump-
tion. Furthermore, with over 300 observed issues and over 1200 categorized review

45

5 Analysis of Defects in Reviews

changes our study is—to the best of our knowledge—the largest manual assessment
on reviews thus far.

There is a threat to the internal validity of our study that we could not fully mitigate:
If communication on issues happened outside of the formal review process and tools, this
probably decreases the number of review rounds needed, and could lead to some “self-
motivated changes” that are in reality the suggestion of a reviewer. In ConQAT, LeVD
explicitly forbids such communication, but we observed it several times during our stays
at CQSE GmbH. Whenever we detected severe deviations from the prescribed processes,
we rated the issue invalid, in the hope to exclude the threat. However, this process in itself
could exclude certain types of issues, and therefore lead to a biased preselection of valid
issues. We had no evidence to assume this in practice, though.

External Threats

External threats concern the problem of how generalizable the results of our studies are.
Our case studies are exposed to three main threats:

Selection of Study Objects

By performing our case studies on two actively developed real-world OSS projects, we are
confident that the results could be similar for the plethora of OSS projects which use con-
tinuous code reviews. The fact that ConQAT and GROMACS show similar results for RQs
1 to 3—despite the fact that the systems share few similarity otherwise—further supports
this theory. However, every real-world system is different, and therefore we strongly as-
sume that idiosyncrasies like the E META defect categories in GROMACS, would show up
for many projects in practice. This—and prior research excluding [ML09]—speaks against
the idea of a “naturally given”, fixed ratio of evolvability versus functional defects that
code reviews find.

Subjective Defect Categorization

The categorization process for building up our database is subjective because an individual
does the rating. The results are only generalizable if a high enough interrater reliability is
given. We addressed this problem with two surveys which measure the amount of agree-
ment between the study participants and our own reference estimation with the κmeasure
[Coh60]. Our topology is a slight adoption of [ML09], who built their topology on existing
prior defect categorization that have proven to be relevant and distinguishable. [ML09]
give a Cohen’s κ between the two authors of the paper of 0.79, which indicates “very good
agreement” between raters. Since we altered their topology, and introduced the motiva-
tion for a review change as a new concept, we have to validate that both topologies are
repeatable among different raters anew.

Is the categorization done by the author of this thesis repeatable among different raters?

Survey Design To address the question whether others can replicate our estimation of
the defect types and motivations, we designed two surveys:

46

5.5 Threats to Validity

Survey A consists of 118 questions. In each question, we ask the participant to choose
the—in his opinion—best fitting defect category of a clearly marked change between two
versions of source code, according to the topology from section 2.2.

Survey B consists of 17 questions. In each question, the participant shall determine the
motivation for a clearly marked change in two versions of source code, according to the
topology from section 2.2.

As a preparation, the study participants had access to four resources.

1. The topology overview chart from figure 2.3 (without colours).

2. The detailed description of defect categories from appendix A, with a few additional
explanatory notes.

3. A description of the three motivational categories similar to section 2.2

4. A 20-minute video on how we rated defects in ConQAT with the help of our Eclipse
Plugin.

We designed the time to browse through the preparation material to take one hour, and
the participation in both surveys to take two hours.

We asked four computer science students in their master to complete both surveys, all of
which had been studying for more than four years. Although none of the students had a
scientific interest in reviews (and therefore did not know the defect topologies beforehand),
three are long-term contributors to ConQAT and as such, had practical experience with
reviews. Participant C had less experience with code reviews and Software Engineering in
general.

We used our own estimation of the categories as the reference, and subsequently calcu-
lated Cohen’s Kappa for every study participant and our reference estimation.

Survey Results Figures 5.14 and 5.15 show the results of our surveys on interrater re-
liability. Our results generally indicate that interrater reliability is given: The κ values
on the motivation for a change are extremely high, with two raters who were in perfect
agreement to our own ratings. The values on the exact defect categorizations are smaller.
According to the arbitrary guidelines of [Fle81] on the interpretation of κ, they show a
“fair to good agreement” at 0.45 ≤ κ ≤ 0.62. The equally arbitrary guidelines from [VG05]
would interpret the values from 0.45 to 0.60 as moderate agreement, and the values above
0.60 as substantial agreement. If we sub-summarize the same ratings as either functional
or evolvability-related, the κ values for the two-top level categories again show “excel-
lent” agreement except for participant C, shown on the right-hand side of figure 5.14 (with
only two categories, the possibility for error naturally increases, therefore the greater error
bars).

Therefore, we can assume the separation whether a change has functional or non-
functional implications is relatively clear and largely shared among raters. This is an im-
plication that is not evident, as we assumed it to be difficult to assess based only on the
source code, whether a change had functional implications. Participant C was weakest in
making the separation between a functional and an evolvability change. However, he per-
formed well with regard to the precise defect categorization. This means that he was either

47

5 Analysis of Defects in Reviews

Cohen’s Kappa for Detailed Change Categorization
C

o
h
e
n
’s

 K
a
p
p
a

Participant A Participant B Participant C Participant D

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Cohen’s Kappa for Top−Level Change Categorization

C
o
h
e
n
’s

 K
a
p
p
a

Participant A Participant B Participant C Participant D

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Figure 5.14: Survey A: Cohen’s κ for the four Participants A–D in survey A about the defect
categorization of changes. On the left hand side, we report κs for a detailed
category-per-category evaluation. On the right hand side, we only distinguish
between the two top-level categories evolvability and functional.

Cohen’s Kappa for Change Motivation Study

C
o
h
e
n
’s

 K
a
p
p
a

Participant A Participant B Participant C Participant D

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

Figure 5.15: Survey B: Kohen’s κ for the four Participants A–D in survey B about the moti-
vation for changes. Participant A and C were in complete agreement with our
reference categorization of the change motivations, and therefore there is no
error bar.

off completely, i.e. not even hitting the right top-level group—which is not worse for the
unweighted κ than rating an E S O STATEMENTISSUES defect E S O COMPLEXCODE—or
hit the correct classification with high precision. We find a top-down approach—first es-
tablish the correct top-level group, then refine—more sensible, so we think this supports

48

5.6 Discussion

the thesis that the general concept of the proposed defect topology is well understood.
For all raters excluding participant C, the result says that while raters generally agreed

on the top-groups, their agreement was not as high when it comes down to the cat-
egory level. We can explain this with the multitude of similar categories which re-
quire precise reading to differentiate them. Examples of categories which are difficult
to differentiate include E S O DUPLICATION vs. E S S SEMANTICDUPLICATION, and
E S O STATEMENTISSUES vs. E S O COMPLEXCODE. Moreover, known as the “Kappa
Paradox” [VG05], low κ values do not need to indicate poor agreement, if the categories to
be rated are rare. It could be argued that this is the case for many of our categories in our
survey (the average number of occurrences per category is 2.7 in survey A).

Given the relatively short preparation time, we expect that we could reach higher inter-
rater reliability by allowing a longer preparation time, and providing personal trainings.
The fact that participant C has only little experience with reviews, and performed worst in
the rating of defect categories, supports this assumption.

The study leaves out the problem of determining the scope of a change. We cannot
measure this with Cohen’s Kappa, because it assumes a fixed number of values to rate.
However, changes triggered by a TODO statement are trivial to spot and can make up for
more than 80% of the total changes (cf. section 5.4). Therefore, even if the recognition of all
other changes was off by 50%, there would still be a considerate agreement on the number
of changes of more than 90%.

[EW98] investigates the repeatability of code defect classifications in even more detail.
Our functional defect types are a subset of the types they suggest. Besides more advanced
studies, they report κs of 0.66 to 0.82, similar to our results. This is in alignment with our
results, confirming that different raters can recognize code defects reliably in a similar way.

5.6 Discussion

In this section, we interpret the collective results from RQ 1 to 3.
In RQ 1 the graphs from both ConQAT samples are similar with respect to the cate-

gories of defects eliminated during review. Therefore, the argument that the review was
more shallow seems not conclusive: We would then expect to find fewer defects in cate-
gories that are difficult to fix. A better explanation could be that the relatively low number
of defects stems from the fact that a well-rehearsed team of two developers (Hummel,
Heinemann) did most of the work in this period.

The fact that ConQAT 100’s and GROMACS’s median is 0 implies that more than 50% of
issues passed review directly in the first round. This could be indicative of a more relaxed
review policy, or a team of authors and reviewers that is well adapted to each other’s
working and reviewing style. However, since the extreme outliers reported above are not
due to inaccuracy in measurement, but a real-occurring situation in systems, it is generally
very difficult to forecast the number of defects precisely without defining a fine-grained
model that takes into account all influences to the review process. We develop such a
model in chapter 6.

The results from RQ 2 could indicate that reviews are likely to find more evolvabil-
ity than functional defects. Therefore, reviews would be especially useful if systems are
long-lived and maintainability is important. [SV01] have a similar conclusion, proposing

49

5 Analysis of Defects in Reviews

“the focus of code inspections should be expanded from just detecting defects to improv-
ing readability.” However, some researchers consider functional defects more severe in
that end users of the products will likely notice them in the form of a bug, an incomplete
or counter-intuitive feature. Consequently, we can still argue that reviews lead to a sub-
stantial, non-insignificant amount of functional changes in the software. Moreover, this
observation was not only qualitative, but quantitatively very similar in our two systems
and the two systems examined by [ML09].

Overall, we can confirm the 75:25 ratio between evolvability and functional defects re-
ported by [ML09]. Priors works to [ML09] on different systems came to strongly diverging
ratios.

Despite stark differences in the absolute number of findings, ConQAT Random and Con-
QAT 100 have almost identical percentage values for the three measured change motiva-
tions in RQ 3. This is an observation we could similarly establish for RQ 1 and RQ 2. This
result could therefore be a further indication of the relative similarity between the two
samples.

In GROMACS we have a higher percentage of disregearded and self-changed defects.
The relative high number of disregarded issues could be expression of a discussion-rich re-
view culture. Tools like Gerrit could support such a culture because they make discussing
easy. In contrast, in ConQAT the discussion would have to take place in the source code,
which involves starting the IDE, performing an SVN update, editing and saving the file,
and then re-committing. This tedious process could hinder discussion culture on source
code. On the other hand, we know from entries in the CMS and from observations at
CQSE GmbH that author and reviewer discussed controversial code reviews in personal
meetings.

Example 12 A discussion about a specific line of code in Gerrit.

To be able to compare the results from RQ 3 with the values presented in the literature,
it is paramount to understand that we include a type of changes in our results that is not
present in the literature—self-motivated changes. We assume that self-motivated changes
were either not allowed, or not counted. Therefore, without considering self-motivated
changes, ConQAT Random has 93% review-triggered and 7% discarded defects. ConQAT
100 has 92% and 8%, respectively. GROMACS has 74% and 26%. The results clearly con-
firm that reviewer-triggered changes lead to the majority of changes during review—as
expected—, but that self-motivated changes play an important role that depends on the
system.

50

5.6 Discussion

Generally, our results to RQs 1 to 3 indicate that continuous modern code reviews fo-
cus on maintainability problems. The most frequent defects fixed are trivial naming and
comment defects which typically do not require an indepth understanding of the code.
Maintainability defects that require a deep understanding of the code (E STRUCTURE *)
appeared in fewer numbers. It is important to acknowledge that bad variable naming and
outdated comments could potentially affect code maintainability as much as bad design
[SHJ13].

ConQAT reviews consistently focus on easier maintainability problems, and the distri-
bution of defects is very similar across samples, even though recent reviews found substan-
tially fewer defects. GROMACS on the other hand has more shallow reviews regarding the
number of review findings, and concentrates its maintainability efforts even more in the
easy-to-spot textual domain: Fewer substantial refactorings are suggested. However, meta
evolvability data, which enables requirements and issue traceability, is a very important
concern to GROMACS developers. Furthermore, GROMACS fixes a greater amount of
functional defects in reviews.

51

5 Analysis of Defects in Reviews

52

6 Analysis of Influences on Reviews

In this chapter, we propose and refine a model to uncover influences on the review pro-
cess. We determine which factors have the greatest impact on the outcome of a review.
Concluding the chapter, we evaluate the model in practice with a case study on ConQAT.

6.1 Research Question

We repeat here the research question from the introduction.

RQ 4 Of which kind and how strong are the influences on the number of changes or review rounds?

6.2 Study Design

Figure 6.1: A model describing influences on the review process, and which outcome mea-
surements they affect.

We propose figure 6.1 as a descriptive model for the influences and outcomes of the
review process. To evaluate the model in practice, we transform it into a regression model.
Regression models apply because they describe characteristics of a dependent variable Y
(here: the review rounds, and the changes in the review) in terms of explanatory variables
X1...Xn (here: original code churn, ...). In a more formal syntax, figure 6.1 is written as:

(NumberOfTodos + NumberOfRounds) ∼ CodeChurn +
NumberOfChangedFiles + Tracker + MainBundle + Author + Reviewer

This regression model shall be applied to each issue separately. We have to aggregate
the affected variables’ values on a per-issue basis. There are six explanatory variables:

53

6 Analysis of Influences on Reviews

• Code Churn (discrete count variable) ∈ [0;∞[
Code churn is a metric of how many textual changes occurred between two versions.
Our assumption is that the larger the code churn in the original file, the more there
is to review and therefore, the more TODOs and review rounds will follow.

• Number of Changed Files (discrete count variable) ∈ [0;∞[
Our assumption for including the number of changed files is that we think the more
wide-spread a change is, the more concepts it touches in a system. It is difficult to
master of all these concepts, and thus more TODOs would be present in issues that
altered many different files.

• Tracker (categorial variable) ∈ {uncategorized, adaptive, corrective, ...}
Tracker describes the type of work that is expected to occur in an issue according to
[HR90]. “Corrective changes are modifications to existing functionality, while per-
fective changes introduces [sic!] new functionality to the system. Adaptive mainte-
nance aims at adaptation of a system to changes in the execution environment, while
preventive takes actions that will simplify or remove future, additional change re-
quests.” [RA00] Uncategorized is the default category for issues that do not fit in
any of the aforementioned categories. ConQAT developers set the tracker manually
in the CMS when creating an issue. We assume, for example, that corrective issues
might have a lower TODO statement rate and may need fewer review rounds be-
cause they only slightly modify existing code.

• MainBundle (categorial variable) ∈ {edu.tum.cs.conqat.ada, ...}
ConQAT is internally structured into more than 30 different bundles. Review on
parts of the ConQAT engine is believed to be rigorous, while review in the IDE parts
might be laxer. This variable reports the main building site of an issue.

• Author (categorial variable) ∈ {bader, beller, besenreu, deissenb, ...}
The author of the original code. We could imagine certain authors being prone to
receive more TODO comments than others.

• Reviewer (categorial variable) ∈ {heinemann, hummel, juergens, ...}
We assume that the reviewer has one of the largest influences on a review, since the
TODO comments are his work. We could imagine some reviewers to be more strict
with generally more TODOs than others.

We can gather both the dependant and the explanatory variables in figure 6.1 with au-
tomatic tools. Therefore, we have to design algorithms for the automatic sampling of the
metrics. Thanks to an automated collection we can include all issues in ConQAT in this
case study.

6.3 Study Object

Our study object is ConQAT. For a detailed description of ConQAT, cf. chapter 4. In total,
we sampled 973 issues with 2880 TODO statements.

54

6.4 Study Procedure

6.4 Study Procedure

In this section we describe in detail how we carried out the study design: We introduce
the algorithms used for the automatic sampling, and then continue with how applied and
refined our GLM to the data.

Algorithms

Here we describe how we designed the data sampling algorithms.

Algorithm for Round Detection

The algorithm for the number of review rounds works on the commit sequence of the issue
as stored in Teamscale. It first establishes the original author and the reviewer based on
the first and last commit made in the issue. The implication is that the first commit is made
by the author and the last commit by the reviewer (for closing the issue—i.e. making the
files green). The issue is considered invalid, if the author and the reviewer are equal.

The algorithm uses a finite state machine (FSM) internally to keep track of the review
rounds, as depicted in figure 6.2. For each review round there are two states: A reviewable
state, in which we gather all the commits that lead to a reviewable code version, and a
reviewed state, in which we gather all the commits that lead to a reviewed code version.
The determination whether a commit belongs to the reviewed or reviewable commits is
based on the committer. If it is the author, the commit must be in the reviewable state, if
it is the reviewer, it must be a reviewed commit. If it is neither from the author, nor from
the reviewer—this means a third person has commited into the issue—we leave the state
machine in its current state.

Figure 6.2: The finite state machine-based algorithm for detecting the number of review
rounds.

This procedure is necessary as the review and rework process step can comprise sev-

55

6 Analysis of Influences on Reviews

eral commits. A review round is counted as finished, when the FSM is in either of the
REVIEWED states, and no further commits to these states, so that the next state the FSM
assumes is FIRST REVIEWABLE COMMIT.

Algorithm for TODO Detection

Based on the separated review rounds, we calculate how many TODOs the reviewer added
in each round. We identify the first commit and last commit of the review round—these
might be the same. We then calculate a delta between the commit prior to the review round
and at the end of the review round. The number of TODO statements that the delta returns
is the number of TODO statements added in this review round.

Algorithm for Code Churn

For the calculation of the code churn we use ConQAT’s diff algorithm, which is based on
[Mye86]. We calculate the churn on the source lines of code, meaning that a code churn
value of 1 represents the change, the addition, or removal of one line of source code in a
file.

The code churn is calculated on the original commits: We checkout the files affected by
the issue before the first commit and after the last commit in the original code version.
Based on the two versions, we calculate the code churn.

Algorithm for Main Bundle

We list all touched files in the issue, and then extract from each fully-qualified file path
the package. We count how many files reside in each of the extracted bundle names. The
bundle with the highest number of touched files is considered the main bundle of the issue.

Algorithms for Author, Reviewer, Tracker

We extract the information for author, reviewer and tracker directly from Redmine. We
then perform a sanity check whether the author and reviewer determined by the algorithm
for round detection equal the information from Redmine. If they differ, we invalidate the
issue.

Invalidating an issue

We designed the algorithms in such a way that they rate an issue invalid once they detect
any deviations from assumed fail-safe defaults. This lead to 973 valid out of 1558 issues
with contributions to the SVN.

Appliance of a Regression Model

Here we describe how we evaluated the model with the help of the statistics software R
[R C13].

In order to decide which distribution for the standard count models approximates our
dependant variables best, we analyse the histograms of our dependant variables. The

56

6.4 Study Procedure

number of review rounds is not a suitable dependant variable because it has only a very
narrow range of values it can assume. Additionally, the distribution is left-skewed, since
most issues have only one review round.

Histogram of Number of TODOs

Number of TODOs

F
re

q
u
e
n
c
y

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

Figure 6.3: The histogram of the number of TODOs per issue.

The histogram for the distribution of the TODOs in figure 6.3 looks similar to a Poisson
distribution, but is zero-inflated and skewed to the left. The minimum NumberOfTodos is
0, the maximum 164. Its median is 0, the mean 2.96. The first quantile is 0, the third 2.00.

A generalised linear model (GLM) is the preferred approach for such non-normal dis-
tributions [WH11]. We modelled the dependent variable NumberOfTodos with a negative
binomial distribution. Figure 6.3 does not imply a Poisson distribution, the standard way
distribution for count models. An exemplary GLM with a Poisson distribution showed
strong signs of overdispersion because the varation in the NumberOfTodos histogram is
greater than its mean. Consequently, this GLM yielded a very small p-value, which fur-
ther indicates that a negative binomial distribution would have a better fit than a Poisson
distribution [Kre99].

Effect of the Independent Variables on the Dependent Variable

In order to better understand the model, we must evaluate the relationship between each
of the independent variables on the dependent variable in the model separately [Fah].
Most plots from the explanatory to the dependent variable are very diffuse. In this section,

57

6 Analysis of Influences on Reviews

we only report on interesting relationships.

0 50 100 150

0
1
0
0
0

2
0

0
0

3
0
0
0

4
0
0
0

Number of TODOs vs. Code Churn

NumberOfTodos

C
o
d
e

C
h

u
rn

Figure 6.4: The number of TODOs vs. the code churn.

The only clear moderate correlation holds between the number of changed files and
the number of TODOs: The number of changed files is linearly correlated to the number
of TODOs with a significant Pearson’s r of 0.65 [GN96]. However, the plot of the two
variables is similar to figure 6.4, so even this strongest of all relations does not suggest an
immediate linear relationship.

There are five outliers in figure 6.4, which we manually checked for validity. In is-
sue 1251 the author removed the complete source code of JUnit from the repository
and instead uploaded an archive that contained the code. This caused lots of file
changes, but no TODO commments. Issue 3714 moved the LeVD rating support to the
org.conqat.engine.commons, which caused lots of file moves, but only few TODO
comments. Issue 4273 is an issue which a new student from the three weeks internships
on ConQAT worked on. Issue 4387 is a large-scope bug that introduces live evaluation
for the architecture editor. In the context of issue 3232, the work-intensive restructuring of
ConQAT scopes was performed.

None of the outliers seems to be the result of erroneous measurement. We could debate
whether to exclude issue 1251, since it is a special situation that is unlikely to re-occur.
However, the measurements for issue 1251 are correct, so we decided to keep it in the
dataset.

An intuitive assumption is that, as our original code churn becomes larger, we receive
more TODOs. However, the relationship is surprisingly small and its plot in figure 6.4
does not suggest a linear relationship (Pearson’s r = 0.30).

58

6.5 Results

Inter-Relationships Between Independent Variables

The theory of GLMs dictates that no strong or trivial relationship in-between the indepen-
dent variables should exist. In the following, we calculate Pearson’s r as an estimator of
the relationship between explanatory variables that are likely correlated [Fah].

The number of changed files and the code churn are related to each other. However, it is
unclear how strong this relationship is from a sheer logical point of view. If the correlation
is only weak, our GLM would still be working and could contain both as independent
variables. Pearson’s r for the number of changed files and the code churn is 0.33, which
is only a mild correlation: Substantial parts of the code churn are not explainable by the
number of changed files, and therefore it is valid to leave both variables in the model [Fah].

Refinement of the GLM

Our first model-fit reported a θ = 0.4124, a standard error of 0.0328 and a log-likelihood
of –1487.5 (2· log-likelihood –2975) [AL06]. The detailed coefficient results showed that
we did not have one reviewer or author instantiation for the indicator variable reviewer
and author that could report a statistically significant value. Therefore, it stands to reason
whether the reviewer and author parameter as a whole have an overall significant impact
on the dependant variable.

We performed a 14 degrees of freedom χ2-test to compare the model with and without
the reviewer as an explanatory variable [GN96]. The model without the reviewer had a
slightly smaller θ and slightly smaller log-likelihood (cf. appendix B). At Pr(χ) = 0.23
the χ2-test implied that the reviewer variable is a statistically insignificant predictor of the
number of TODOs in our model, because it is larger than our significance interval of 0.05.
As a result, we refined our model to exclude the reviewer.

To test whether the author is significant in the new model, we perform a 23 degrees of
freedom χ-test on a model with and without the author as an explanatory variable. At
Pr(χ) = 0.00018 the author does have a significant influence in the model.

A 4 degree χ-test indicates that the tracker is a statistically significant predictor of the
number of TODOs (Pr(χ) = 3.5 · exp(−10)).

6.5 Results

Figure 6.5 shows the refined influence model excluding the reviewer and the number of
review rounds. The parameters in green boxes are statistically significant on a 95% signif-
icance interval. For the detailed results of our GLM fit, cf. appendix B. A mathematical
expression for our model is given in equation 6.1, where i is the issue number [AL06].

log(Number of TODOsi) = β0 + β1 · Code Churni +

+β2 ·Number of Changed Filesi +
+β3 ·MainBundlei + β4 · Trackeri + β5 ·Authori (6.1)

One should read the parameter coefficients for count variables β1...β5 from equa-
tion 6.1 the following way: For example, NumberOfChangedFiles reports a pa-
rameter coefficient value of 0.048253. This means, that for every one unit-increase

59

6 Analysis of Influences on Reviews

in NumberOfChangedFiles, the expected log count of the dependent variable
NumberOfTodos increases by 0.048253. In other words, for every file that we touch in an
issue, we expect the log of the number of TODOs to increase by 0.05. With p < 2 ·exp(−16),
the parameter NumberOfChangedFiles is highly significant.

Since the log(Number of TODOs) changes, it can have greater effects than a simple linear
function. This is a property of every model with an underlying logarithmic relationship.

Example 13 Given an expected number of 5 TODOsfor an issue: log(5) ≈ 0.698. Con-
trolling for all other variables in the issue, we change ten additional files in the issue.
log(New number of TODOs) ≈ 1.698+10 · 0.048253 = 2.181. Solving to new number of TODOs,
the number of expected TODOs rises from 5 to 8.9.

Example 14 Imagine an issue 1 that implements a new feature (tracker perfective), and which
has an expected 20 chanes. Imagine a corrective issue 2 identical to 1 wrt. all other variables:
log(Changes2) ≈ log(20) − 1.365 = 1.63 ⇒ Changes2 ≈ 5.1. We expect issue 2 to have 15 changes
in review less than issue 1 (75% reduction), and the only reasons for this is a change in the tracker.

One has to interpret categorial variables like Tracker slightly differently: Since it is the
default value for this category, the value uncategorized in the tracker is missing. All
other values like corrective are relative to the value of uncategorized. Thus, if one
sets the tracker to corrective for an issue, we expect 0.65 fewer log TODOs than for
uncategorized issues. The other categorial variables follow this interpretation scheme.

Figure 6.5: The refined model of influences on the review process.

We used the valid issues from both ConQAT samples to generate one large, coher-
ent database which we could use as reference to compare the automatic review findings
against. Figures 6.6 and 6.7 show the manually assessed values versus the automatically
determined values for the number of rounds and the number of changes per issue. A tri-
angle symbolizes the manual measurement, and a dot the automatic data. We observe in
both graphs that the automatic measure is almost always either spot-on for the majority
of measurements, or a small under-estimation of the manual assessment. Therefore, the
number of TODOs seems a good estimator of the number of actual changes in an issue, as
shown in figure 6.7. This is not surprising as we observed in RQ 2 that 12% of changes in
ConQAT are self-motivated, and 7% are discarded, so they roughly cancel each other out.

60

6.5 Results

369

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

Is
s
u
e

ID

Rounds

A
s
s
e
s
s
m

e
n

t

A
u
to

m
a
ti
c

M
a
n
u
a
l

Fi
gu

re
6.

6:
T

he
nu

m
be

r
of

m
an

ua
lly

as
se

ss
ed

ro
un

ds
fr

om
th

e
co

m
bi

ne
d

C
on

Q
A

T
sa

m
pl

es
pl

ot
te

d
ag

ai
ns

t
th

e
nu

m
be

r
of

au
to

-
m

at
ic

al
ly

de
te

rm
in

ed
ro

un
ds

pe
r

is
su

e.

61

6 Analysis of Influences on Reviews

0

5
0

1
0
0

1
5
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

Is
s
u
e

Changes

A
s
s
e
s
s
m

e
n

t

A
u
to

m
a
tic

M
a
n
u
a
l

Figure
6.7:The

num
ber

of
m

anually
assessed

changes
from

the
com

bined
C

onQ
A

T
sam

ples
plotted

againstthe
num

ber
of

auto-
m

atically
determ

ined
TO

D
O

s
per

issue.

62

6.6 Threats to Validity

The results report a θ = 0.400, a standard error of 0.0317 and a log-likelihood of –1496.5
(2· log-likelihood –2993). We test for goodness-of-fit of the model to the data with a χ2 test
on the residual deviance and degrees of freedom [GN96]. The residual deviance of 763.27
on 867 degrees of freedom is highly insignificant 1 − pchisq(763.27, 867) = 0.995, which
means that the negative binomial distribution fits the data well.

However, many of the parameters in the result show a high variability and therefore do
not lie within standard confidence intervals. Reasons for this are mainly the left-skewed
TODO histogram (cf. figure 6.3), and the fact that there is no strong relationship between
any of the explanatory and the dependent variable (cf. section 6.4). Therefore, results from
the GLM should be considered with care, even though the model has a high goodness-of-
fit.

Both our non-categorial count variables are significant: The number of changed files has
a coefficient of 0.048, and the code churn of the original commit a coefficient of 0.0025.

6.6 Threats to Validity

Both internal and external threats endanger the validity of our results. In this section, we
show how we mitigated them.

Internal Threats

Internal threats concern the validity of our measurements.
Even though we designed our algorithms to assume safe defaults and skip an issue

when they detect problems, there is the risk of a systematic failure for the review round
and number of TODO detection algorithms. We used the valid issues from both ConQAT
samples ConQAT Random and ConQAT 100 from chapter 5 to generate one large, coher-
ent database which we could use as reference to compare the automatic review findings
against. As shown in figures 6.6 and 6.7, our automatic approximations are quite accurate.

Issue Review Rounds Changes
ConQAT Random ConQAT 100 ConQAT Random ConQAT 100

4118 2 2 2 1
4127 4 3 12 7
4129 2 2 7 4
4703 2 2 2 2
4741 2 3 8 8

Table 6.1: A comparison of key metrics of the issues that we sampled independently for
both ConQAT Random and ConQAT 100.

Table 6.1 depicts five issues which we sampled independently in both ConQAT 100 and
ConQAT Random. When the two samples did not agree, we assumed the lowest reported
number. While most issues are similar, issues 4127 and 4129 have quite differing change
counts, although the same person sampled the issues. We discuss this problem of observer
reliability and how we mitigated it in section 5.5.

63

6 Analysis of Influences on Reviews

Some instantiation of variables have too few values. Therefore, we could exclude these
from the model. However, we rely on the fact that they will not be significant and leave
them in the model. Consequently, we can only interpret significant data.

Given the distribution of TODOs in figure 6.3, one could argue that we should use a
two-step hurdle model, or a zero-inflated model. Both models do not apply in our context:
Hurdle models describe the dependent variable as an outcome of a two phase processes,
which is not the case for the number of TODOs statements: Reviewers do not flip a coin to
decide whether they will write any number of review comments, or none [Gre94]. Zero-
inflated models attempt to account for excess zeros. They assume there are two kinds
of zeros, correctly-measured zeros and false excess zeros, called structural zeros [BZ05].
However, our zeros are correctly measured and part of the data. Therefore, a zero-inflated
model approach is not applicable for our data.

Another crucial threat is that we have not included all influencing dependent variables
in our modelling. This is almost certainly true, since we only included technical, measur-
able aspects of reviews. Difficult to measure benefits like knowledge transfer, enhanced
team spirit and communication go beyond the scope of this thesis. However, we es-
tablished that our model fits the data well, so that—at least for the variables we have
modelled—we find no obligations against our refined model.

External Threats

External threats are about the generalizability of our results.
While we assume ConQAT is prototypical of many current OSS projects that employ

continuous reviews, the analysis of only one system does not allow us to draw conclusions
about the review process in general. To mitigate this thread, we would need a larger case
study on more projects.

Our model figure 6.5 contains variables that could be measured on most projects, since
it is general information that almost any software project equipped with a VCS could pro-
vide: The author, the reviewer, the code churn, the number of touched files, and the num-
ber of TODOs would be similarly extract on any system. In contrast, some systems might
not have a system architecture from which we could infer the MainBundle of the issue. Ad-
ditionally, not all systems assign a tracker to a bug. From our knowledge of OSS systems,
we believe that these systems are the majority. Nevertheless, a model without the Main-
Bundle or Tracker could still make sense. Other projects might even provide additional
information that could go into the model, e.g. whether a developer was a core developer
or a newcomer.

6.7 Discussion

In this section, we discuss and interpret the results from our regression model.
A surprising finding is that the reviewer did not have a significant influence in our

model. All other variables have a significant impact. We expected that certain reviewers
tend to place more review comments than others, but this was apparently not the case
in ConQAT. However, one cannot draw the conclusion that the reviewer does not have a
substantial influence on the review result. This is obviously so, since the reviewer is the one

64

6.7 Discussion

to place the review comments. We can only say that, in our influence model on ConQAT,
the reviewer had no significant influence on the number of changes. If we considered the
types of the changes, we would likely have gotten a strong influence of the reviewer: In
ConQAT, almost all F ALGORITHMPERFORMANCE defects came from one reviewer.

The results confirm many of our initial assumptions about code reviews: As we change
more files, we expect more changes in the review. This is similarly true, although the
relationship is not as strong, for the code churn of the original commit with a coefficient
of 0.0025: The more lines of code we originally change, the more changes we are likely
to perform during review. Both coefficients lie in a significance interval of 0.001, which
makes these statements very reliable.

Another initial guess was that issues in the tracker corrective will cause fewer defects,
while issues in the tracker perfective will cause more defects. We can confirm the statement
on a 0.05 significance interval in our model. If the tracker corrective is used, the expected
log count of changes decreases by 0.65 compared to uncategorized issues. Implementing
a perfective issue will increase the expected log count by 0.70. Therefore, the difference
between corrective and perfective issues is a significant parameter difference of 1.365. Ex-
ample 14 demonstrates what an effect the tracker has on an otherwise unchanged issue.
Comparing it with other significant values, e.g. the code churn or the number of changed
files, we can conclude that the tracker has a strong influence on the number of expected
changes for average-sized issues.

Only few of the categorial variable instances in appendix B lie in standard significance
intervals. As we established, this is not due to a lack of model fit (cf. section 6.5), but
because of the high variances in the data set and the zero-inflated histogram of the depen-
dent variables (cf. sections 6.4 and 6.6). For example, none of the author instantiations had
a significant value. At significance values of 1, their coefficients are highly insignificant.
This is likely the result of a great range of expected values for the number of changes per
author: All authors had many issues with zero changes, but some with substantially more.
This makes the author a bad regression parameter for the actual number of changes. How-
ever, it is interesting to see that all authors with a long history of developing ConQAT—
Beller, Deißenböck, Feilkas, Göde, Heinemann, Hummel, Jürgens, Kanis, Kinnen, Pfaller,
Poehlmann, Streitel—had similar coefficients around 33: Beller reported the highest coeffi-
cient at 35.5, while Kinnen had the smallest coefficient at 31.9. Given the lack of confidence
on these parameters, we can only interpret the values as a trend that could need further
studies. The basic message is that the main developers seem to perform roughly the same
number of changes on average. We can only explain the lower coefficients for authors like
Besenreuther and Hodaie—who were students from university internships—by the fact
that for these authors, issues with a very low number of TODOs were valid, while they
either did not have issues with a lot of TODOs, or those were invalidated. Since a biased
selection of issues for authors with very few defects will always be a threat, we recom-
mend to only interpret values for significant variables. For these, we are safe to assume
that we sampled enough observations.

Similarly, for the MainBundle variable, we observed only two significant values.
The coefficients for most bundles are within [−1; 1], but there are some outliers like
org.conqat.engine.server, all focusing around –37. For these bundles, we had
few observations, so that reviews with zero TODOs over-weighed. For example,
org.conqat.engine.server has only 1 issue, org.conqat.engine.bugzilla 2 is-

65

6 Analysis of Influences on Reviews

sues assigned to it, whereas org.conqat.engine.commons has 80 issues. This could
be either because the bundles existed only for a short time, or because we did not sample
enough observations for these bundles.

66

7 Conclusion

In this chapter we describe contributions and conclusions from our thesis.
We have refined and proposed a framework for the quantification of code review

changes that encompasses a defect definition, a defect topology and three research ques-
tions. It bases on the novel assumption that every change in the review process can be
modelled as a defect, and that the motivation of a change is an orthogonal classification.
The research questions are empirically answered in case studies on ConQAT and GRO-
MACS, which comprise over 1300 categorized defects.

Our case studies show that defect distribution is similar across systems, even though the
number of findings per issue differs greatly. Documentary defects, especially changes in
comments and identifier names, make up most of the defects in the systems. The more dif-
ficult to find structural evolvability defects form a minority in both systems. This confirms
findings from other contemporary research on light-weight reviews.

We detected a ratio of evolvability to functional changes of ≈ 75:25 for both ConQAT
and GROMACS. While this confirms recent research, we do not have enough evidence to
assume the 75:25 ratio a “universal constant”.

We examined the motivation for changes in reviews and found that the majority of
changes is triggered by a review comment (80% for ConQAT, 60% for GROMACS). Self-
motivated changes account for a smaller, but relevant part of all changes at 10% for Con-
QAT and 20% for GROMACS. This indicates that studies which did not address these
changes could be biased if self-motivated changes are allowed in the review process. The
majority of review suggestions is realised, and only a minority is discarded. Therefore,
reviews are useful in practice to and lead to changes in the system.

These findings suggest that reviews are a sensible measure to ensure the maintainability
of long-lived software systems. However, reviews might be of less value if maintainability
is not a concern.

As a second case study, we created and refined a model for the outcomes and influences
of the review process on ConQAT. The study is based on a database with 973 automatically
sampled issues. We showed that the reviewer had no significant impact on the number of
expected changes. Other intuitive assumptions about the review process turned out to be
true: Bug-fixing issues produce significantly less changes than issues which create new
functionality. The more code churn or the higher the number of touched files in an issue,
the more changes do we observe on average. Our result indicates that the MainBundle
has an influence on the number of changes. However, since only two of the values are
significant, we cannot draw conclusions from it. The data regarding the effect of the issue’s
author was too variable, but hints at the fact that all core developers in ConQAT have a
roughly similar probability for receiving the same number of changes.

67

7 Conclusion

68

8 Future Work

In this chapter we outline interesting future research work beyond the scope of this thesis.

8.1 Automated Reviews

In our case study on ConQAT, we largely ignored findings in the “Visual Representation”
category, as all ConQAT developers use the Eclipse IDE. Eclipse can be configured to use
its integrated code formatter automatically upon saving a document. Therefore, the au-
tomatic code formatter can handle most of the visual defects—bracket usage, indentation,
long line and space usage—without manual interaction.

Similarly, could automatic defect findings tools like FindBugs [Fin], PMD [PMD], FxCop
[FxC] and StyleCop [Sty] find some of the reviewer’s suggestions, that are less trivial than
visual defects? Could this make some of the review efforts redundant?

Typical examples for review findings created by FindBugs are a method that is too long
(cf. figure 8.1), or a missing null check. If the reviewer does not have to look for certain
trivial kinds of defects he can concentrate on the more substantial functional and evolv-
ability defects. The use of automated defect finding tools could result in a reduction of
costs for reviews and ensure a more consistent detection for defects like null pointer ex-
ceptions. Moreover, reviews would be more consistent, as some defects would be found
independent of who reviewed the code.

An open research question for a future case study would be to analyse which kinds of
defects can be found by state-of-the-art defect finding tools. To address to which degree
they overlap with defects found in the review, the tools could be employed on reviewed
code. Judging from the percentage of overlap between automated and human findings, we
could draw conclusions whether these tools can replace reviews to some extent, or should
rather be used in parallel.

As an example from Eclipse’s code formatter shows, these tools would currently not be
able to completely replace the human reviewer: The formatter cannot perform grouping of
related program code lines into one “paragraph”. This would require a logical recognition
of associated program lines beyond the capabilities of today’s code formatter. Many blank
lines—especially within functions—have to be removed manually by the developers. We
would expect to find similar defects categories that automated tools can’t check. Experi-
mentation with such tools during our case studies indicated that findings from FindBugs
often went hand-in-hand with reviewer findings, although the reviewer suggestions were
reason-based and the automated findings only based on thresholds like maximal method
length or class length. A further interesting research question could therefore be if such
tools could at least effectively support the reviewer.

69

8 Future Work

Figure 8.1: The automated code finding “Violation of LSL Threshold” is in alignment with
the reviewer’s manual finding to extract a method. The review comment states
that the method contains duplicated code and that extracting a method would
increase readability. In contrast, the automated warning finds a function that is
too long. The solution to both findings is to extract a method.

8.2 Comparison of File-Based vs. Change-Based Reviews

A prejudice against changed-based reviews could be that the big picture is lost over time.
Once defects are present, they may go unnoticed as long as this particular part of the
code is not changed. In contrast, LeVD is a particular review process in which not only
the changeset—like in Gerrit—is analysed, but the reviewer is encouraged to assess all
touched files thoroughly. A possible research question for such a work could be: What are
the benefits and costs of a file-based review strategy over a change-based review?

8.3 Further Case Studies

Since we could only examine two OSS systems in this study, we need further empirical ev-
idence to confirm RQs 1–3 on a broader basis. An interesting target would be to see if other
systems also center around the 75:25 percentage of evolvability to functional defects, and
why. Particularly for a comparison of the benefits of file versus change based reviews, we
would need an even larger database, as there is a plethora of other uncontrolled confining
variables.

We examined influences on the review process in Chapter 6 only on ConQAT. Since
we already have manual data on GROMACS from RQ 1–3, an idea would be to perform
a similar influence analysis. This would require us to adopt the automated assessment
algorithms from ConQAT to GROMACS, addressing questions such as how to deal with
multiple reviewers. Could models on other systems confirm that the reviewers did not

70

8.3 Further Case Studies

have an influence on the number of TODOs?
Since the model from RQ 4 did not have significant values for many of its variables, it

would be interesting to see if other models than generalised linear models could return
smaller confidence intervals. While we do not expect fundamental changes because of the
small correlation of the independent variables with the dependent variable, a mixed model
approach could refine some of the parameter coefficients. This would further increase the
validity and generalizability of our results.

71

8 Future Work

72

73

A Review Defect Classification

A Review Defect Classification

74

75

A Review Defect Classification

76

77

A Review Defect Classification

78

79

A Review Defect Classification

80

B GLM – Precise Model Coefficients

For the calculation of the GLM, we used the R package MASS [VR02, R C13], and the fol-
lowing command:

glm.nb(formula = NumberOfTodos ˜ CodeChurn + NumberOfChangedFiles +
Tracker + MainBundle + Author, maxit = 500,
init.theta = 0.4000689894, link = log)

The command calculated a model with the following parameter coefficients.

Coefficient Value
Error Term
(Intercept) -34.004192
Code Churn
CodeChurn 0.002574
Changed Files
NumberOfChangedFiles 0.048253
Tracker
corrective -0.650777
adaptive 0.527672
preventive -0.728885
perfective 0.701534
MainBundle
edu.tum.cs.conqat.ada 0.296053
edu.tum.cs.conqat.architecture 0.476954
edu.tum.cs.conqat.cd incubator -0.937791
edu.tum.cs.conqat.clonedetective 0.324762
edu.tum.cs.conqat.commons 0.793104
edu.tum.cs.conqat.coverage -36.786918
edu.tum.cs.conqat.cpp -36.354702
edu.tum.cs.conqat.database -0.577904
edu.tum.cs.conqat.dotnet 0.353873
edu.tum.cs.conqat.filesystem 0.298028
edu.tum.cs.conqat.findbugs -35.107270
edu.tum.cs.conqat.graph -35.941594
edu.tum.cs.conqat.html presentation 0.167364
edu.tum.cs.conqat.io -0.568088
edu.tum.cs.conqat.java 0.519543
edu.tum.cs.conqat.klocwork -22.025370
edu.tum.cs.conqat.model clones -35.455045

81

B GLM – Precise Model Coefficients

edu.tum.cs.conqat.quamoco 1.961523
edu.tum.cs.conqat.regressiontest 0.200431
edu.tum.cs.conqat.scripting -35.754787
edu.tum.cs.conqat.self -0.150049
edu.tum.cs.conqat.simion 0.468814
edu.tum.cs.conqat.simulink -0.960608
edu.tum.cs.conqat.sourcecode 0.343499
edu.tum.cs.conqat.svn -36.106515
edu.tum.cs.conqat.systemtest -35.532797
edu.tum.cs.conqat.text 1.146001
edu.tum.cs.conqat.tracking -1.945797
org.conqat.android.metrics -4.168671
org.conqat.engine.abap 1.167765
org.conqat.engine.api analysis 0.907535
org.conqat.engine.architecture 0.638846
org.conqat.engine.blocklib -36.948434
org.conqat.engine.bugzilla -36.647132
org.conqat.engine.clone tracking 2.257996
org.conqat.engine.code clones -0.079704
org.conqat.engine.codesearch -0.518992
org.conqat.engine.commons 0.715151
org.conqat.engine.core 0.409059
org.conqat.engine.cpp 0.167496
org.conqat.engine.dotnet 0.614509
org.conqat.engine.graph 0.558142
org.conqat.engine.html presentation 0.276341
org.conqat.engine.incubator 0.214965
org.conqat.engine.index 0.966182
org.conqat.engine.io -1.978735
org.conqat.engine.java 0.801053
org.conqat.engine.levd -5.550055
org.conqat.engine.persistence 1.003474
org.conqat.engine.report 0.808321
org.conqat.engine.repository 2.021809
org.conqat.engine.resource 0.213969
org.conqat.engine.self -37.333548
org.conqat.engine.server -37.621400
org.conqat.engine.service -0.270366
org.conqat.engine.simulink 1.616546
org.conqat.engine.sourcecode 0.784824
org.conqat.engine.systemtest 1.870592
org.conqat.engine.text 0.133910
org.conqat.ide.architecture -0.950501
org.conqat.ide.clones 0.075398
org.conqat.ide.commons.gef -0.356652
org.conqat.ide.commons.ui 0.001236

82

org.conqat.ide.core 0.842194
org.conqat.ide.dev tools 0.829869
org.conqat.ide.editor 0.179334
org.conqat.ide.findings 2.281378
org.conqat.ide.index.analysis -4.333337
org.conqat.ide.index.core -0.275343
org.conqat.ide.index.dev -39.310811
org.conqat.lib.bugzilla 0.087937
org.conqat.lib.commons 0.947664
org.conqat.lib.parser 1.739108
org.conqat.lib.scanner -1.234565
org.conqat.lib.simulink 2.565453
Author
bader 34.631486
beller 35.562336
besenreu -3.317127
deissenb 32.449625
feilkas 31.312504
goede 33.752369
heinemann 33.206064
herrmama 33.432585
hodaie -3.935601
hummel 32.753639
juergens 32.796284
junkerm 31.903729
kanis 34.042702
kinnen 31.927869
klenkm 32.747542
lochmann 34.915264
ludwigm -4.271351
malinskyi NA
pfaller 33.255721
plachot 33.805882
poehlmann 33.535303
steidl -3.021712
stemplinger 35.001225
streitel 34.719616
svejda NA

Degrees of Freedom: 971 Total (i.e. Null); 867 Residual
Null Deviance: 1387

Deviance Residuals:
Min 1Q Median 3Q Max

-2.45004 -0.99200 -0.61802 0.00664 2.50223

83

B GLM – Precise Model Coefficients

0 1000 2000 3000 4000 5000

0
2

0
4

0
6

0
8

0

IssueID vs. Bundle

IssueID

M
a

in
B

u
n

d
le

Figure B.1: The IssueID versus the lexicographically sorted MainBundle.

An interesting side-observation from the GLM in figure B.1 is the clearly-visible trunk
move from edu.tum.* to org.conqat.* bundles. The move happened around issue
3200.

For the sake of completeness, we provide the raw output from R.

Coefficients: (2 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.400e+01 1.383e+07 0.000 1.0000
CodeChurn 2.574e-03 3.138e-04 8.203 2.34e-16 ***
NumberOfChangedFiles 4.825e-02 4.391e-03 10.989 < 2e-16 ***
Trackercorrective -6.508e-01 3.315e-01 -1.963 0.0496 *
Trackeradaptive 5.277e-01 3.470e-01 1.521 0.1283
Trackerpreventive -7.289e-01 4.584e-01 -1.590 0.1118
Trackerperfective 7.015e-01 2.850e-01 2.461 0.0138 *
MainBundleedu.tum.cs.conqat.ada 2.961e-01 2.136e+00 0.139 0.8898
MainBundleedu.tum.cs.conqat.architecture 4.770e-01 1.048e+00 0.455 0.6489
MainBundleedu.tum.cs.conqat.cd_incubator -9.378e-01 1.233e+00 -0.761 0.4469
MainBundleedu.tum.cs.conqat.clonedetective 3.248e-01 1.001e+00 0.324 0.7456
MainBundleedu.tum.cs.conqat.commons 7.931e-01 9.806e-01 0.809 0.4186
MainBundleedu.tum.cs.conqat.coverage -3.679e+01 6.711e+07 0.000 1.0000
MainBundleedu.tum.cs.conqat.cpp -3.635e+01 6.711e+07 0.000 1.0000
MainBundleedu.tum.cs.conqat.database -5.779e-01 1.326e+00 -0.436 0.6629
MainBundleedu.tum.cs.conqat.dotnet 3.539e-01 1.075e+00 0.329 0.7420
MainBundleedu.tum.cs.conqat.filesystem 2.980e-01 1.013e+00 0.294 0.7686
MainBundleedu.tum.cs.conqat.findbugs -3.511e+01 6.711e+07 0.000 1.0000
MainBundleedu.tum.cs.conqat.graph -3.594e+01 3.662e+07 0.000 1.0000
MainBundleedu.tum.cs.conqat.html_presentation 1.674e-01 1.009e+00 0.166 0.8683
MainBundleedu.tum.cs.conqat.io -5.681e-01 1.247e+00 -0.456 0.6486
MainBundleedu.tum.cs.conqat.java 5.195e-01 1.016e+00 0.512 0.6090
MainBundleedu.tum.cs.conqat.klocwork -2.203e+01 3.110e+00 -7.082 1.42e-12 ***
MainBundleedu.tum.cs.conqat.model_clones -3.546e+01 6.711e+07 0.000 1.0000
MainBundleedu.tum.cs.conqat.quamoco 1.962e+00 1.504e+00 1.304 0.1922
MainBundleedu.tum.cs.conqat.regressiontest 2.004e-01 1.224e+00 0.164 0.8700
MainBundleedu.tum.cs.conqat.scripting -3.575e+01 4.745e+07 0.000 1.0000
MainBundleedu.tum.cs.conqat.self -1.500e-01 1.618e+00 -0.093 0.9261
MainBundleedu.tum.cs.conqat.simion 4.688e-01 1.300e+00 0.361 0.7183
MainBundleedu.tum.cs.conqat.simulink -9.606e-01 1.228e+00 -0.782 0.4340
MainBundleedu.tum.cs.conqat.sourcecode 3.435e-01 1.049e+00 0.327 0.7434
MainBundleedu.tum.cs.conqat.svn -3.611e+01 4.745e+07 0.000 1.0000
MainBundleedu.tum.cs.conqat.systemtest -3.553e+01 6.711e+07 0.000 1.0000
MainBundleedu.tum.cs.conqat.text 1.146e+00 1.385e+00 0.827 0.4080
MainBundleedu.tum.cs.conqat.tracking -1.946e+00 1.568e+00 -1.241 0.2147
MainBundleorg.conqat.android.metrics -4.169e+00 6.852e+07 0.000 1.0000
MainBundleorg.conqat.engine.abap 1.168e+00 1.416e+00 0.825 0.4095
MainBundleorg.conqat.engine.api_analysis 9.075e-01 1.414e+00 0.642 0.5211
MainBundleorg.conqat.engine.architecture 6.388e-01 1.051e+00 0.608 0.5434

84

MainBundleorg.conqat.engine.blocklib -3.695e+01 4.745e+07 0.000 1.0000
MainBundleorg.conqat.engine.bugzilla -3.665e+01 4.745e+07 0.000 1.0000
MainBundleorg.conqat.engine.clone_tracking 2.258e+00 1.478e+00 1.528 0.1265
MainBundleorg.conqat.engine.code_clones -7.970e-02 1.029e+00 -0.077 0.9383
MainBundleorg.conqat.engine.codesearch -5.190e-01 2.122e+00 -0.245 0.8067
MainBundleorg.conqat.engine.commons 7.152e-01 9.787e-01 0.731 0.4649
MainBundleorg.conqat.engine.core 4.091e-01 1.023e+00 0.400 0.6892
MainBundleorg.conqat.engine.cpp 1.675e-01 1.590e+00 0.105 0.9161
MainBundleorg.conqat.engine.dotnet 6.145e-01 1.255e+00 0.490 0.6243
MainBundleorg.conqat.engine.graph 5.581e-01 1.458e+00 0.383 0.7018
MainBundleorg.conqat.engine.html_presentation 2.763e-01 9.963e-01 0.277 0.7815
MainBundleorg.conqat.engine.incubator 2.150e-01 1.107e+00 0.194 0.8460
MainBundleorg.conqat.engine.index 9.662e-01 1.076e+00 0.898 0.3690
MainBundleorg.conqat.engine.io -1.979e+00 1.710e+00 -1.157 0.2472
MainBundleorg.conqat.engine.java 8.011e-01 1.045e+00 0.767 0.4432
MainBundleorg.conqat.engine.levd -5.550e+00 2.183e+00 -2.542 0.0110 *
MainBundleorg.conqat.engine.persistence 1.003e+00 1.044e+00 0.961 0.3365
MainBundleorg.conqat.engine.report 8.083e-01 1.504e+00 0.537 0.5910
MainBundleorg.conqat.engine.repository 2.022e+00 1.411e+00 1.433 0.1520
MainBundleorg.conqat.engine.resource 2.140e-01 1.007e+00 0.212 0.8318
MainBundleorg.conqat.engine.self -3.733e+01 4.745e+07 0.000 1.0000
MainBundleorg.conqat.engine.server -3.762e+01 6.711e+07 0.000 1.0000
MainBundleorg.conqat.engine.service -2.704e-01 1.067e+00 -0.253 0.8000
MainBundleorg.conqat.engine.simulink 1.617e+00 1.368e+00 1.182 0.2373
MainBundleorg.conqat.engine.sourcecode 7.848e-01 1.008e+00 0.779 0.4360
MainBundleorg.conqat.engine.systemtest 1.871e+00 1.260e+00 1.484 0.1377
MainBundleorg.conqat.engine.text 1.339e-01 1.431e+00 0.094 0.9255
MainBundleorg.conqat.ide.architecture -9.505e-01 1.119e+00 -0.850 0.3955
MainBundleorg.conqat.ide.clones 7.540e-02 1.166e+00 0.065 0.9484
MainBundleorg.conqat.ide.commons.gef -3.567e-01 1.332e+00 -0.268 0.7888
MainBundleorg.conqat.ide.commons.ui 1.236e-03 1.195e+00 0.001 0.9992
MainBundleorg.conqat.ide.core 8.422e-01 1.115e+00 0.755 0.4500
MainBundleorg.conqat.ide.dev_tools 8.299e-01 1.303e+00 0.637 0.5242
MainBundleorg.conqat.ide.editor 1.793e-01 1.042e+00 0.172 0.8633
MainBundleorg.conqat.ide.findings 2.281e+00 1.935e+00 1.179 0.2385
MainBundleorg.conqat.ide.index.analysis -4.333e+00 6.852e+07 0.000 1.0000
MainBundleorg.conqat.ide.index.core -2.753e-01 2.084e+00 -0.132 0.8949
MainBundleorg.conqat.ide.index.dev -3.931e+01 6.711e+07 0.000 1.0000
MainBundleorg.conqat.lib.bugzilla 8.794e-02 1.466e+00 0.060 0.9522
MainBundleorg.conqat.lib.commons 9.477e-01 9.808e-01 0.966 0.3339
MainBundleorg.conqat.lib.parser 1.739e+00 1.879e+00 0.926 0.3546
MainBundleorg.conqat.lib.scanner -1.235e+00 1.098e+00 -1.124 0.2610
MainBundleorg.conqat.lib.simulink 2.565e+00 2.013e+00 1.275 0.2024
Authorbader 3.463e+01 1.383e+07 0.000 1.0000
Authorbeller 3.556e+01 1.383e+07 0.000 1.0000
Authorbesenreu -3.317e+00 6.852e+07 0.000 1.0000
Authordeissenb 3.245e+01 1.383e+07 0.000 1.0000
Authorfeilkas 3.131e+01 1.383e+07 0.000 1.0000
Authorgoede 3.375e+01 1.383e+07 0.000 1.0000
Authorheinemann 3.321e+01 1.383e+07 0.000 1.0000
Authorherrmama 3.343e+01 1.383e+07 0.000 1.0000
Authorhodaie -3.936e+00 6.852e+07 0.000 1.0000
Authorhummel 3.275e+01 1.383e+07 0.000 1.0000
Authorjuergens 3.280e+01 1.383e+07 0.000 1.0000
Authorjunkerm 3.190e+01 1.383e+07 0.000 1.0000
Authorkanis 3.404e+01 1.383e+07 0.000 1.0000
Authorkinnen 3.193e+01 1.383e+07 0.000 1.0000
Authorklenkm 3.275e+01 1.383e+07 0.000 1.0000
Authorlochmann 3.492e+01 1.383e+07 0.000 1.0000
Authorludwigm -4.271e+00 6.852e+07 0.000 1.0000
Authormalinskyi NA NA NA NA
Authorpfaller 3.326e+01 1.383e+07 0.000 1.0000
Authorplachot 3.381e+01 1.383e+07 0.000 1.0000
Authorpoehlmann 3.354e+01 1.383e+07 0.000 1.0000
Authorsteidl -3.022e+00 4.943e+07 0.000 1.0000
Authorstemplinger 3.500e+01 1.383e+07 0.000 1.0000
Authorstreitel 3.472e+01 1.383e+07 0.000 1.0000
Authorsvejda NA NA NA NA

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Negative Binomial(0.4001) family taken to be 1)

Null deviance: 1387.25 on 971 degrees of freedom
Residual deviance: 763.27 on 867 degrees of freedom
AIC: 3205

Number of Fisher Scoring iterations: 1

Theta: 0.4001
Std. Err.: 0.0317

2 x log-likelihood: -2993.0240

85

Bibliography

[53910] IEEE standard classification for software anomalies. IEEE Std 1044-2009 (Re-
vision of IEEE Std 1044-1993), pages 1–23, 2010.

[Ada84] J. Adair. The hawthorne effect: A reconsideration of the methodological arti-
fact. Journal of applied psychology, 69(2):334, 1984.

[AGDS07] E. Arisholm, H. Gallis, T. Dyba, and D. Sjoberg. Evaluating pair program-
ming with respect to system complexity and programmer expertise. Software
Engineering, IEEE Transactions on, 33(2):65–86, 2007.

[AL06] B. Abraham and J. Ledolter. Introduction to regression modeling. Thomson
Brooks/Cole, 2006.

[BA04] K. Beck and C. Andres. Extreme programming explained: embrace change.
Addison-Wesley Professional, 2004.

[Bak97] R. Baker. Code reviews enhance software quality. In Proceedings of the 19th
international conference on Software engineering, pages 570–571. ACM, 1997.

[BB05] B. Boehm and V. Basili. Software defect reduction top 10 list. Foundations of
empirical software engineering: the legacy of Victor R. Basili, page 426, 2005.

[BB13] A. Bacchelli and Ch. Bird. Expectations, outcomes, and challenges of modern
code review. In Proceedings of the 2013 International Conference on Software
Engineering, pages 712–721. IEEE Press, 2013.

[BLV01] A. Bianchi, F. Lanubile, and G. Visaggio. A controlled experiment to assess
the effectiveness of inspection meetings. In Software Metrics Symposium, 2001.
METRICS 2001. Proceedings. Seventh International, pages 42–50. IEEE, 2001.

[BMG10] M. Bernhart, A. Mauczka, and T. Grechenig. Adopting code reviews for agile
software development. In Agile Conference (AGILE), 2010, pages 44–47. IEEE,
2010.

[Bro87] F. Brooks. No silver bullet-essence and accidents of software engineering.
IEEE computer, 20(4):10–19, 1987.

[Bug] Bugzilla. http://www.bugzilla.org/. Accessed 2013/10/13.

[BvdSvD95] H. Berendsen, D. van der Spoel, and R. van Drunen. GROMACS: A message-
passing parallel molecular dynamics implementation. Computer Physics Com-
munications, 91(1):43–56, 1995.

[BZ05] V. Berger and J. Zhang. Structural Zeros. John Wiley & Sons, Ltd, 2005.

87

http://www.bugzilla.org/

Bibliography

[CBC+92] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and
M. Wong. Orthogonal Defect Classification - A Concept for In-Process Mea-
surements. IEEE Trans. Software Eng., 18(11):943–956, 1992.

[CdSH+03] L. Cheng, C. de Souza, S. Hupfer, J. Patterson, and S. Ross. Building collabo-
ration into ides. Queue, 1(9):40, 2003.

[CLR+02] M. Ciolkowski, O. Laitenberger, D. Rombach, F. Shull, and D. Perry. Software
inspections, reviews and walkthroughs. In Software Engineering, 2002. ICSE
2002. Proceedings of the 24rd International Conference on, pages 641–642. IEEE,
2002.

[CMKC03] M. Cusumano, A. MacCormack, Ch. Kemerer, and B. Crandall. Software
development worldwide: The state of the practice. Software, IEEE, 20(6):28–
34, 2003.

[Coh60] J. Cohen. A coefficient of agreement for nominal scales. Educational and psy-
chological measurement, 20(1):37–46, 1960.

[Con] ConQAT. http://www.conqat.org. Accessed 2013/08/30.

[CW00] A. Cockburn and L. Williams. The costs and benefits of pair programming.
Extreme programming examined, pages 223–247, 2000.

[Dei09] F. Deißenböck. Continuous Quality Control of Long-Lived Software Systems. PhD
thesis, 2009.

[DHJS11] Deißenböck, F., U. Hermann, E. Jürgens, and T. Seifert. LEvD: A lean evolu-
tion and development process. https://conqat.cqse.eu/download/
levd-process.pdf, 2011. Accessed 2013/08/30.

[DM03] J. Duraes and H. Madeira. Definition of software fault emulation operators:
A field data study. In Dependable Systems and Networks, 2003. Proceedings. 2003
International Conference on, pages 105–114. IEEE, 2003.

[Ent] GitHub Enterprise. https://enterprise.github.com/. Accessed
2013/10/14.

[EPSK01] Ch. Ebert, C. Parro, R. Suttels, and H. Kolarczyk. Improving validation activ-
ities in a global software development. In Proceedings of the 23rd international
Conference on Software Engineering, pages 545–554. IEEE Computer Society,
2001.

[EW98] K. El Emam and I. Wieczorek. The repeatability of code defect classifications.
In Software Reliability Engineering, 1998. Proceedings. The Ninth International
Symposium on, pages 322–333. IEEE, 1998.

[Fag76] M. Fagan. Design and code inspections to reduce errors in program devel-
opment. IBM Systems Journal, 15(3):182–211, 1976.

[Fah] K. Fahrmeir. Regression, modelle, methoden und anwendungen.

88

http://www.conqat.org
https://conqat.cqse.eu/download/levd-process.pdf
https://conqat.cqse.eu/download/levd-process.pdf
https://enterprise.github.com/

Bibliography

[Fin] FindBugs™. http://findbugs.sourceforge.net/. Accessed
2013/08/30.

[Fle81] J. Fleiss. Statistical methods for rates and proportions, 1981.

[FxC] FxCop. http://findbugs.sourceforge.net/. Accessed 2013/08/30.

[Ger] Gerrit. https://code.google.com/p/gerrit/. Accessed 2013/10/09.

[GHJV93] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstraction
and reuse of object-oriented design. Springer, 1993.

[Gita] Git. http://git-scm.com/.

[Gitb] GitHub. https://github.com/. Accessed 2013/10/09.

[Gmb] CQSE GmbH. http://www.cqse.eu. Accessed 2013/10/14.

[GN96] P. Greenwood and M. Nikulin. A guide to chi-squared testing, volume 280.
Wiley-Interscience, 1996.

[Gra92] R. Grady. Practical software metrics for project management and process improve-
ment, volume 3. Prentice Hall Englewood Cliffs, 1992.

[Gre94] W. Greene. Accounting for excess zeros and sample selection in poisson and
negative binomial regression models. 1994.

[Gro] Gromacs. http://www.gromacs.org. Accessed 2013/09/02.

[GW06] T. Gorschek and C. Wohlin. Requirements abstraction model. Requirements
Engineering, 11(1):79–101, 2006.

[Hat08] L. Hatton. Testing the value of checklists in code inspections. Software, IEEE,
25(4):82–88, 2008.

[HR90] J. Hartmann and D. Robson. Techniques for selective revalidation. Software,
IEEE, 7(1):31–36, 1990.

[Hum95] W. Humphrey. A discipline for software engineering. 1995.

[Jen] Jenkins. http://jenkins-ci.org/. Accessed 2013/10/14.

[Jir] Jira. https://www.atlassian.com/de/software/jira. Accessed
2013/10/13.

[Ken06] N. Kennedy. Google Mondrian: web-based code review and storage. http:
//www.niallkennedy.com/blog/2006/11/google-mondrian.
html, 2006. Accessed 2013/10/14.

[KK09] S. Kollanus and J. Koskinen. Survey of software inspection research. The
Open Software Engineering Journal, 3(1):15–34, 2009.

89

http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
https://code.google.com/p/gerrit/
http://git-scm.com/
https://github.com/
http://www.cqse.eu
http://www.gromacs.org
http://jenkins-ci.org/
https://www.atlassian.com/de/software/jira
http://www.niallkennedy.com/blog/2006/11/google-mondrian.html
http://www.niallkennedy.com/blog/2006/11/google-mondrian.html
http://www.niallkennedy.com/blog/2006/11/google-mondrian.html

Bibliography

[KM93] J. Knight and E Myers. An improved inspection technique. Communications
of the ACM, 36(11):51–61, 1993.

[KP09a] C. Kemerer and M. Paulk. The impact of design and code reviews on soft-
ware quality: An empirical study based on psp data. Software Engineering,
IEEE Transactions on, 35(4):534–550, 2009.

[KP09b] Ch. Kemerer and M. Paulk. The Impact of Design and Code Reviews on Soft-
ware Quality: An Empirical Study Based on PSP Data. IEEE Trans. Software
Eng., 35(4):534–550, 2009.

[KPHR02] B. Kitchenham, S. Pfleeger, D. Hoaglin, and J. Rosenberg. Preliminary Guide-
lines for Empirical Research in Software Engineering. IEEE Trans. Software
Engineering, 28(8):721 – 734, August 2002.

[Kre99] Ch. Krebs. Ecological methodology, volume 620. Benjamin/Cummings Menlo
Park, California, 1999.

[Lau08] A. Laurent. Understanding open source and free software licensing. O’Reilly, 2008.

[Lib] LibreOffice. http://www.libreoffice.org/. Accessed 2013/09/10.

[Mar03] R. Martin. Agile software development: principles, patterns, and practices. Prentice
Hall PTR, 2003.

[MDL87] H. Mills, M. Dyer, and R. Linger. Cleanroom software engineering. 1987.

[Mer] Mercurial. http://mercurial.selenic.com/. Accessed 2013/10/13.

[Mey08] B. Meyer. Design and code reviews in the age of the internet. Communications
of the ACM, 51(9):66–71, 2008.

[Mil13] L. Milanesio. Learning Gerrit Code Review. Packt Publishing Ltd, 2013.

[ML09] M. Mäntylä and C. Lassenius. What Types of Defects Are Really Discovered
in Code Reviews? IEEE Trans. Software Eng., 35(3):430–448, 2009.

[MRZ+05] J. Maranzano, S. Rozsypal, G. Zimmerman, G. Warnken, P. Wirth, and
D. Weiss. Architecture reviews: Practice and experience. Software, IEEE,
22(2):34–43, 2005.

[Mül04] M. Müller. Are reviews an alternative to pair programming? Empirical Soft-
ware Engineering, 9(4):335–351, 2004.

[Mül05] M. Müller. Two controlled experiments concerning the comparison of pair
programming to peer review. Journal of Systems and Software, 78(2):166–179,
2005.

[MWR98] J. Miller, M. Wood, and M. Roper. Further experiences with scenarios and
checklists. Empirical Software Engineering, 3(1):37–64, 1998.

90

http://www.libreoffice.org/
http://mercurial.selenic.com/

Bibliography

[Mye86] E. Myers. Ano (nd) difference algorithm and its variations. Algorithmica,
1(1-4):251–266, 1986.

[Ohl] Ohloh.net. http://www.ohloh.net/p/gromacs. Accessed 2013/09/02.

[Per] Perforce. http://www.perforce.com/. Accessed 2013/10/13.

[Pha] Phabricator. http://phabricator.org/. Accessed 2013/10/14.

[PlaBC] Plato. Gorgias. 390/387 B.C.

[PMD] PMD. http://pmd.sourceforge.net/. Accessed 2013/08/30.

[Pro] The Trac Project. http://trac.edgewall.org/. Accessed 2013/10/13.

[PV94] A. Porter and L. Votta. An experiment to assess different defect detection
methods for software requirements inspections. In Proceedings of the 16th in-
ternational conference on Software engineering, pages 103–112. IEEE Computer
Society Press, 1994.

[R C13] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2013.

[RA00] T. Ritzau and J. Andersson. Dynamic deployment of java applications. In
Java for Embedded Systems Workshop, volume 1, page 21. Citeseer, 2000.

[RAT+06] P. Runeson, C. Andersson, T. Thelin, A. Andrews, and T. Berling. What do
we know about defect detection methods? Software, IEEE, 23(3):82–90, 2006.

[Red] Redmine. http://www.redmine.org/. Accessed 2013/10/13.

[Rev] Mylyn Reviews. http://www.eclipse.org/reviews/. Accessed
2013/08/30.

[SHJ13] D. Steidl, B. Hummel, and E. Jürgens. Quality analysis of source code com-
ments. In Proceedings of the 21st IEEE Internation Conference on Program Com-
prehension (ICPC’13), 2013.

[SJLY00] Ch. Sauer, R. Jeffery, L. Land, and Ph. Yetton. The effectiveness of software
development technical reviews: A behaviorally motivated program of re-
search. Software Engineering, IEEE Transactions on, 26(1):1–14, 2000.

[SKI04] G. Sabaliauskaite, Sh. Kusumoto, and K. Inoue. Assessing defect detection
performance of interacting teams in object-oriented design inspection. Infor-
mation and Software Technology, 46(13):875–886, 2004.

[Sty] StyleCop. http://stylecop.codeplex.com/. Accessed 2013/08/30.

[Sub] Apache™ Subversion®. http://subversion.apache.org/. Accessed
2013/10/13.

[SV01] H. Siy and L. Votta. Does the Modern Code Inspection Have Value? In ICSM,
page 281, 2001.

91

http://www.ohloh.net/p/gromacs
http://www.perforce.com/
http://phabricator.org/
http://pmd.sourceforge.net/
http://trac.edgewall.org/
http://www.redmine.org/
http://www.eclipse.org/reviews/
http://stylecop.codeplex.com/
http://subversion.apache.org/

Bibliography

[Sys] Concurrent Versions System. http://savannah.nongnu.org/
projects/cvs. Accessed 2013/10/14.

[Tea] Teamscale. http://www.teamscale.org. Accessed 2013/09/11.

[UNMM06] H. Uwano, M. Nakamura, A. Monden, and K. Matsumoto. Analyzing indi-
vidual performance of source code review using reviewers’ eye movement.
In Proceedings of the 2006 symposium on Eye tracking research & applications,
pages 133–140. ACM, 2006.

[VG05] A. Viera and J. Garrett. Understanding interobserver agreement: the kappa
statistic. Fam Med, 37(5):360–363, 2005.

[Vot93] L. Votta. Does every inspection need a meeting? In ACM SIGSOFT Software
Engineering Notes, volume 18, pages 107–114. ACM, 1993.

[VR02] W. Venables and B. Ripley. Modern Applied Statistics with S. Springer, New
York, fourth edition, 2002. ISBN 0-387-95457-0.

[Wag08] S. Wagner. Defect classification and defect types revisited. In Proceedings of
the 2008 workshop on Defects in large software systems, pages 39–40. ACM, 2008.

[WF84] G. Weinberg and D. Freedman. Reviews, walkthroughs, and inspections.
Software Engineering, IEEE Transactions on, (1):68–72, 1984.

[WG68] M. Wilk and R. Gnanadesikan. Probability plotting methods for the analysis
for the analysis of data. Biometrika, 55(1):1–17, 1968.

[WH11] C. Wu and M. Hamada. Experiments: planning, analysis, and optimization, vol-
ume 552. John Wiley & Sons, 2011.

[WJKT05] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger. Comparing bug finding
tools with reviews and tests. In Testing of Communicating Systems, pages 40–
55. Springer, 2005.

[WKCJ00] L. Williams, R. Kessler, W. Cunningham, and R. Jeffries. Strengthening the
case for pair programming. Software, IEEE, 17(4):19–25, 2000.

[WRBM97a] M. Wood, M. Roper, A. Brooks, and J. Miller. Comparing and combining soft-
ware defect detection techniques: a replicated empirical study. In ACM SIG-
SOFT Software Engineering Notes, volume 22, pages 262–277. Springer-Verlag
New York, Inc., 1997.

[WRBM97b] M. Wood, M. Roper, A. Brooks, and J. Miller. Comparing and Combining
Software Defect Detection Techniques: A Replicated Empirical Study. In 5th
ACM SIGSOFT – Symposium on the Foundations of Software Engineering, pages
262–277, September 1997.

[WYCL08] Y. Wang, L. Yijun, M. Collins, and P. Liu. Process improvement of peer code
review and behavior analysis of its participants. In ACM SIGCSE Bulletin,
volume 40, pages 107–111. ACM, 2008.

92

http://savannah.nongnu.org/projects/cvs
http://savannah.nongnu.org/projects/cvs
http://www.teamscale.org

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Introduction of Research Questions
	Outline

	Fundamentals
	Short Terms and Definitions
	Review Process

	Related Work
	A Short History on Reviews
	Formal Inspections
	Light-Weight Reviews
	Review Effectiveness and Efficiency
	Comparison With Other Defect Detection Methodologies
	Supporting Tools
	Defect Topologies

	Study Objects: ConQAT and GROMACS
	ConQAT
	GROMACS

	Analysis of Defects in Reviews
	Structure of Case Study
	Types of Review Defects
	Distribution Between Maintenance and Functional Defects
	Usage of Code Review Findings
	Threats to Validity
	Discussion

	Analysis of Influences on Reviews
	Research Question
	Study Design
	Study Object
	Study Procedure
	Results
	Threats to Validity
	Discussion

	Conclusion
	Future Work
	Automated Reviews
	Comparison of File-Based vs. Change-Based Reviews
	Further Case Studies
	Appendix
	Review Defect Classification
	GLM – Precise Model Coefficients
	Bibliography

