
How (Much) Do Developers Test?

Moritz Beller, Georgios Gousios, Andy Zaidman
Delft University of Technology,

The Netherlands

{m.m.beller, g.gousios, a.e.zaidman}@tudelft.nl

Abstract—What do we know about software testing in the
real world? It seems we know from Fred Brooks’ seminal work
“The Mythical Man-Month” that 50% of project effort is spent
on testing. However, due to the enormous advances in software
engineering in the past 40 years, the question stands: Is this
observation still true? In fact, was it ever true? The vision for
our research is to settle the discussion about Brooks’ estimation
once and for all: How much do developers test? Does developers’
estimation on how much they test match reality? How frequently
do they execute their tests, and is there a relationship between
test runtime and execution frequency? What are the typical
reactions to failing tests? Do developers solve actual defects in the
production code, or do they merely relax their test assertions?
Emerging results from 40 software engineering students show
that students overestimate their testing time threefold, and 50%
of them test as little as 4% of their time, or less. Having proven
the scalability of our infrastructure, we are now extending our
case study with professional software engineers from open-source
and industrial organizations.

I. INTRODUCTION

Understanding how developers test and how to better

support them in practice is crucial for the design of next-

generation Integrated Development Environments (IDEs) and

testing tools. Important questions, that need to be answered to

increase our understanding, are:

1) How much time is spent on engineering test code versus

production code? Do developers’ estimation on how

much they test match reality?

2) How frequently do developers execute their tests? Do

they do it after each change to production code, or only

a few times a day?

3) How long does a test run executed in the IDE take? Is

there a relation between the frequency and the length of

execution?

4) What are the typical reactions to failing tests? Do

developers solve actual defects in the production code,

or do they merely relax their test assertions?

In his seminal work on the mythical man-month from 1975,

Brooks estimates that 50% of the development time of a

software product is dedicated to testing [1]. In the 40 years

since, software engineering has changed dramatically. New

programming languages, intelligent IDEs, a more agile way

of working and test-driven development (TDD) are but a few

of these advances. In general, practitioners and researchers

have gained a broader understanding of the importance and

benefits of software testing [2], expressed in its wide adoption

in practice [2], [3].

Despite these fundamental changes, however, there is a

surprising absence of research that follows up on Brooks’

estimation and examines how much time developers devote to

testing and production code. Even in recent literature, Brooks’

rough 50% estimate is still widely referenced [4], [5]. It comes

as no surprise then that the question of how much time needs

to be spent on testing is one of the grand research challenges

in empirical software engineering [6].

As developer testing, we understand any activity the devel-

oper undertakes in his IDE related to testing the program [7].

This usually consists of writing and executing unit tests, but

is widely complemented by integration or system testing [8].

On a project level, developer testing is often complemented

by work outside the IDE, manual testing, dedicated test teams

and automated test generation. In contrast to these quality as-

surance methods, testing in the IDE cannot be quantified with

a traditional time measurement approach, as it is intertwined

with developing production code, especially when using TDD.

By observing the fine-grained steps in which developers

construct software in their IDEs, we are able to provide

deep insights into the aforementioned questions. Our approach

contrasts the traditional repository mining, which focuses on

the final result of fine-grained developer activities in the IDE,

but does not provide accurate timing information about them.

In this paper, we present a novel approach to tackle our

empirical questions on developer testing in a large-scale case

study and report its first emerging results. To this end, we have

created the WatchDog project.1 While the data collection from

developers across several open-source and commercial organi-

zations is ongoing, student data from a software engineering

course at TU Delft gives interesting first results: It shows that

students use on average only 9% of their working time in the

IDE for engineering tests. Moreover, they test three times less

in reality than they think they do. In our ongoing work, we

are complementing this study with a study on professional

developers from commercial and open-source projects, and

diving deeper into the reactions of individual developers to

failing test cases.

II. METHODS

To study our research questions, we could watch over the

shoulders of developers and manually take notes on how they

develop their software. However, when we want to perform the

study on a larger scale, we need an automated way to reliably

1http://www.testroots.org/testroots watchdog.html

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.193

559

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.193

559

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.193

559

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.193

559

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.193

559

� � ����

����	
�����

�������

��

��

��������

������������

��

���

���

���

���

���

Fig. 1. Exemplary data showing an intuitive visualization of intervals.

collect usage data related to developer testing. For this reason,

we have developed WatchDog, which we detail in this section.

We then explain how we attracted developers to using it.

A. WatchDog Infrastructure

Starting with an initial prototype in 2012, we evolved

WatchDog into an open-source and production-ready software

solution2 with a client-server architecture, which is designed

to scale up to thousands of simultaneous users.

1) WatchDog Client: We implemented WatchDog as an

Eclipse plugin, because the Eclipse Java Development Tools

edition (JDT) is one of the most widely used IDEs for Java

programming [9]. Thanks to its integrated JUnit support, the

Eclipse JDT facilitates developer testing.

WatchDog instruments the Eclipse JDT environment and

registers listeners for internal UI events related to program-

ming behavior and test executions. We group coherent events

as intervals which comprise its interval type, start and end

time. Thanks to this abstraction, we can closely follow the

typical workflow of a developer without observing hundreds

of events per minute. Every time a developer reads, modifies

or executes a test or production code class, WatchDog creates

a new interval and enriches it with interval type-specific data.

Having installed WatchDog, developers register a user and

the workspaces in which it should be active. The registration

includes a survey which asks for an estimate of how much time

they spend on testing, and how experienced a programmer they

are.

Figure 1 shows an exemplary workflow: a developer

starts Eclipse and WatchDog creates EclipseOpen and

UserActive intervals (1). After that, the user executes the

unit tests of the class he needs to change, triggering the

creation of a JUnitInterval that is enriched with the test

2https://github.com/TestRoots/watchdog

result “Passed” (2). Having browsed the source code of the

file (3) to understand which parts need to change (triggering

a ReadingInterval), the developer then performs the

necessary changes. In such a TypingInterval, WatchDog

stores categorical information on the opened file, like its source

lines of code before and after editing, and whether it is

production or test code. To rate a file as a test, we look for

imports of Java test frameworks and their annotations (Junit,

Mockito, or PowerMock), and “Test” in the file path. This way,

we can correctly identify all tests that employ standard Java

testing frameworks as test runners for their unit, integration,

or system tests, and even test-related utility classes. A re-

execution of the unit test shows it fails after the edit (4). The

developer steps through the test with the debugger (5) and

fixes the error. The final re-execution of the test (6) assures

him of his success. All user intervals are backed by a timeout,

so that we only record when the user is actively working in

the IDE. Intervals are locally cached, allowing offline work,

and automatically sent as a Json stream.

2) WatchDog Server: The WatchDog server accepts this

Json data via a REST API. After sanity checking, the in-

tervals are stored in a NoSQL database. This infrastructure

allows high extensibility up to thousands of clients and easy

maintainability in case of changes in the client. Automated

ping-services monitor the health of our web API, so we can

immediately react if a problem occurs.

B. Acquisition of WatchDog Users

Our initial hope was that it is sufficient to advertise

WatchDog through its website, Twitter, and Facebook. How-

ever, despite enormous efforts,3 the social media campaign

resulted in only two new users.

We identified three reasons for this: 1) Privacy-concerns.

2) A lack of an incentive to use WatchDog, as it does not give

developers immediate insights. 3) An increasing popularity of

other IDEs like IntelliJ IDEA.

As a result, we devised a new strategy on how to approach

the Eclipse community as a whole and interested companies

individually (mitigating reason 3). Furthermore, we imple-

mented a new feature that displays basic statistics from the

last development hour in the Eclipse IDE (2). While this

increases the theoretical possibility that developers change

their behavior, we could never fully exclude the Hawthorne

effect [10], namely that developers change their behavior

because they know they are being watched. At the same time,

we are developing solutions to make it attractive for companies

to deploy WatchDog (1), like user-agnostic data collection and

project reports aimed at the management level.4

To calibrate our measurements, we asked 165 students

participating in the 10-week course “Software Engineering

Methods” (SEM) at TU Delft to install WatchDog. In the

course, student teams of five to six implement a small game in

Java. The course’s weekly assignments focus on implementing

3E.g., we were retweeted in total over 60 times, http://goo.gl/AqE2zU
4http://files.figshare.com/1800935/sample watchdog report.pdf

560560560560560

new features while the students learn and apply sound software

engineering principles. Students following SEM are familiar

with testing and have to deliver a well-tested final product with

75% statement coverage (C0).

III. PRELIMINARY RESULTS

In this section, we present the initial analysis of 388,669

intervals we received from 40 SEM students working on

24 different projects over the course of 10 weeks. In total,

we observed 4.2 work years of development in the IDE,

assuming the OECD average number of working hours in the

Netherlands in 2013.5

Table I presents our preliminary results on variables that

have been aggregated per project. From top to bottom, the

table has four sections: overall project statistics, general user

behavior in the IDE, user behavior with respect to testing,

and statistics of test executions. Its mini-histograms provide

an intuition of their distribution. Qx denotes the x-quantile.

In general, we see that users spent on average 4 hours of

work time per day, in which, on most projects, they read

code rather than write it (70% reading time). Both variables

“reading” and “writing time” are normally distributed across

projects (a Shapiro-Wilks test accepts the null hypothesis at

p < 0.05 in both cases), with relatively small deviations

(σ = 15.09); this indicates a fairly consistent developer

behavior in the activities reading and writing code. All findings

we report in the following are initial observations, though, and

we need to validate them with a larger set of professional

developers before they should be used to draw conclusions.

1) How much time is spent on engineering test code versus
production code? Do developers’ estimation on how much they
test match reality?

The core question of this early research paper is how much

time software engineers spend on testing versus developing

production code in their IDE. Table I shows that SEM students

spend on average 91% of their time reading, writing and

modifying production code and only 9% on performing these

activities on test code. This low effort on testing is surprising,

as SEM requires 75% C0 coverage. It seems that reaching 75%

coverage is possible even when working less than a tenth of the

development time on tests. In fact, 50% of the students spent

more than 96% of their time on production code. This result

strengthens research that questions the value of coverage-based

criteria [11].

Almost all students spent less than 50% of their time

on testing, most of them considerably less. Brooks’ 50%-

hypothesis is therefore not accurate for the observed SEM

projects. This raises the question whether his hypothesis holds

for real-world projects, where additional testing forms might

be practiced.

Comparing the actual to the estimated test-production time

distribution, we see that the 5% and 95% quantiles are

relatively similar (56% to 66%, 90% to 100%) – supporting the

5http://stats.oecd.org/index.aspx?DataSetCode=ANHRS

intuition that developers who do not test at all, or who test a

lot, can identify their exceptional behavior easily. However,

more alarmingly, the vast majority of students consistently

overestimated the time they spend on testing threefold (9%

instead of an estimated 27%). We urgently need to investigate

this disturbing finding with open-source and industrial devel-

opers, as it could be one of the explaining factors for the large

amount of bugs in today’s software.

2) How frequently do developers execute their tests? Do they
do it after each change to production code, or only a few times
a day?

Students executed their tests on quite regular intervals

(4.5/day). Together with the average recording time per day,

this means students executed their tests roughly every 50

minutes on average. Judging from our own development

experience, we had expected more frequent test executions.

Explanations could be that the undergraduate students are

relatively new to object-orientation and the complex Eclipse

IDE, which slows down development and hence decreases

the number of necessary test executions. More programming

practice could help here. Students might also underestimate the

value of their tests. A lesson for teachers could be to make

students more aware of the benefits of frequent testing.

3) How long does a test run executed in the IDE take? Is there
a relation between the frequency and the length of execution?

Because the SEM projects are developed from scratch

within 10 weeks, we expect relatively short test execution

times. The median test duration of 1.2 seconds strengthens

our expectation. At the same time, there is no significant

correlation between the test duration and the number of test

executions. A reason could be that the difference between short

(0.0s) and long test executions (13.5s) is relatively unimportant

in practice: Both give almost immediate feedback to the

programmer. We hypothesize this might change for projects

with more evolved tests that take longer to run.

4) What are the typical reactions to failing tests? Do devel-
opers solve actual defects in the production code, or do they
merely relax their test assertions?

Most students experienced one failing test case per day,

substantial outliers were rare. Together with the short working

time per day (median 2.5 hours), this poses the question

whether students mostly made small, incremental improve-

ments to their software.
We can visualize a developer’s test and development behav-

ior similarly to figure 1 to answer this question. From our data,

we can see whether developers try to debug into the failing

test case (as in our example in section II-A1), how often they

re-execute the offending test case, and whether they change

the test itself or related production code. We have produced

such graphs from the student data and expect to gain deeper

insights when we examine them in comparison to a broader

population of professional software engineers.
We can also quantify the changes in TypingIntervals

in terms of how much code they modify. However, to be able

561561561561561

TABLE I
DESCRIPTIVE STATISTICS FOR ALL SEM PROJECTS (EACH VARIABLE AGGREGATED PER PROJECT)

Variable Unit Q0.05 Mean Median Q0.95 Histogram

Recorded intervals count 1874 9890 7176 23040

Average recorded time hours / day 0.0 4.0 2.5 14.3

Java reading time % 48 70 70 91

Java writing time % 9 30 30 52

Production code time (estimate) % 56 73 75 90
Production code time (actual) % 66 91 96 100

Test code time (estimate) % 10 27 25 44
Test code time (actual) % 0 9 4 34

Test executions 1 / day 0.0 4.5 3.0 17.1
Test failures 1 / day 0.0 1.9 1.0 8.2

Test duration seconds 0.0 3.4 1.2 13.5

to answer the question whether test assertions are relaxed, we

would have to record the textual differences to see if “assert”

statements are entirely removed or if their test conditions are

made easier to reach (e.g. by asserting on a range of values

instead of a precise value). Due to privacy-concerns, we do

not record this information at present.

IV. RELATED WORK

A number of tools have been developed to collect and

present development activity at the sub-commit level. These

tools include Syde [12], Spyware [13], and the “Change-

Oriented Programming Environment”6 from Oregon State

University. Other related projects are the “Eclipse Usage

Data Collector”7 and QuantifiedDev.8 However, none of these

focuses on time-related developer testing, and – to the best of

our knowledge – no similar study, or even literature exists.

V. SUMMARY & FUTURE CHALLENGES

In our initial investigation with 40 students, we have seen

that half of them spend 4% or less of their working time

on testing. This clearly contradicts Fred Brooks’ 40-year-old

observation that approximately 50% of software engineering

effort is spent on testing. Perhaps even more striking is that our

40 student participants were spending three times less effort

on engineering tests than they thought they would.

Nevertheless, we understand that student data does not

speak for professional software engineers, and we acknowl-

edge a call to arms to carry out this research in a wide

variety of open source and industrial settings. We are working

on actively attracting developers to participate with a variety

of strategies, such as approaching developer conferences,

targeting Eclipse-specific market places and publishing in

developer magazines. If our initial findings are confirmed

among professional developers, they might be an explanatory

factor for the observed bug-proneness of software, and change

the way developers test.

In follow-up research, we aim to also record how developers

react to failing test cases. This will allow us to get insight into

6http://cope.eecs.oregonstate.edu
7https://eclipse.org/epp/usagedata
8http://www.quantifieddev.org

whether developers fix the actual defect, simply relax their test

assertions or maybe delete the failing test altogether at a more

fine-grained level than observed by Pinto et al. [14].

ACKNOWLEDGMENT

We gratefully acknowledge The Netherlands Organisation

for Scientific Research (NWO) for funding TestRoots. For

their input on the project, we thank Alberto Bacchelli,

Daniel Pelsmaeker, Thomas Kinnen, Fabian Streitel, Martin

Pöhlmann, Anand Sawant, and the students from SEM.

REFERENCES

[1] F. Brooks, The mythical man-month. Addison-Wesley, 1975.
[2] G. Myers, C. Sandler, and T. Badgett, The art of software testing. John

Wiley & Sons, 2011.
[3] D. Janzen and H. Saiedian, “Does test-driven development really im-

prove software design quality?” Software, IEEE, vol. 25, no. 2, 2008.
[4] B. Wang, F. Madani, X. Wang, L. Wang, and C. White, “Design struc-

ture matrix,” in Planning and Roadmapping Technological Innovations.
Springer, 2014.

[5] P. Runeson, C. Andersson, and M. Höst, “Test processes in software
product evolutiona qualitative survey on the state of practice,” Journal
of software maintenance and evolution, vol. 15, no. 1, 2003.

[6] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data
scientists in software engineering.” in Proceedings of the International
Conference on Software Engineering (ICSE), 2014.

[7] G. Meszaros, XUnit Test Patterns: Refactoring Test Code. Prentice Hall
PTR, 2006.

[8] T. Xie, J. de Halleux, N. Tillmann, and W. Schulte, “Teaching and
training developer-testing techniques and tool support,” in Proceeding of
the International Conference on Object oriented programming systems
languages and applications (OOPSLA Companion). ACM, 2010.

[9] P. Muntean, C. Eckert, and A. Ibing, “Context-sensitive detection of
information exposure bugs with symbolic execution,” in Proceedings
of the International Workshop on Innovative Software Development
Methodologies and Practices. ACM, 2014.

[10] J. Adair, “The hawthorne effect: A reconsideration of the methodological
artifact.” Journal of applied psychology, vol. 69, no. 2, 1984.

[11] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code qual-
ity and its relation to issue handling performance,” IEEE Transactions
on Software Engineering, vol. 40, no. 11, 2014.

[12] L. Hattori and M. Lanza, “Syde: a tool for collaborative software de-
velopment,” in Proceedings of the International Conference on Software
Engineering - Volume 2 (ICSE), 2010.

[13] R. Robbes and M. Lanza, “Spyware: a change-aware development
toolset,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2008.

[14] L. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities
of test-suite evolution,” in Symposium on the Foundations of Software
Engineering (FSE). ACM, 2012.

562562562562562

