
Empirical Software Engineering manuscript No.
(will be inserted by the editor)
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Abstract Modern programming languages such as Java, JavaScript, and Rust
encourage software reuse by hosting diverse and fast-growing repositories of
highly interdependent packages (i.e., reusable libraries) for their users. The
standard way to study the interdependence between software packages is to
infer a package dependency network by parsing manifest data. Such networks
help answer questions such as “How many packages have dependencies to pack-
ages with known security issues?” or “What are the most used packages?”.
However, an overlooked aspect in existing studies is that manifest-inferred re-
lationships do not necessarily examine the actual usage of these dependencies
in source code. To better model dependencies between packages, we developed
Präzi, an approach combining manifests and call graphs of packages. Präzi
constructs a dependency network at the more fine-grained function-level, in-
stead of at the manifest level. This paper discusses a prototypical Präzi imple-
mentation for the popular system programming language Rust. We use Präzi
to characterize Rust’s package repository, Crates.io, at the function level and
perform a comparative study with metadata-based networks. Our results show
that metadata-based networks generalize how packages use their dependencies.
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Using Präzi, we find packages call only 40% of their resolved dependencies,
and that manual analysis of 34 cases reveals that not all packages use a depen-
dency the same way. We argue that researchers and practitioners interested in
understanding how developers or programs use dependencies should account
for its context—not the sum of all resolved dependencies.

Keywords package repository · dependency network · package manager ·
software ecosystem · network analysis · call graphs

1 Introduction

Converting information between different well-known formats, accessing exter-
nal storage, manipulating information such as numbers, locations, and dates,
or integrating with popular online services are examples of essential opera-
tions that developers need to handle in software projects. Unlike the standard
library of programming languages, these essential operations change over time
as a result of evolving technologies (e.g., shift from XML to JSON) or provide
support to niche user communities (e.g., interfaces to Twitter API or Amazon
AWS SDK). In addition to a standard library, modern programming languages
such as Java, JavaScript, C#, and Rust also host public repositories for devel-
opers to contribute essential operations in the form of reusable libraries (also
known as packages). A package manager such as Maven, npm, NuGet, and
Cargo enables developers to discover and import packages from repositories
in their workspace.

To be modular, a package should perform a well-defined task, devel-
oped with simple interfaces, and be pluggable (composable) with other pack-
ages (Schlueter 2013; Abdalkareem et al. 2019). The manifest file such as Rust’s
Cargo.toml and npm’s package.json in every package makes libraries com-
posable: developers declare in the manifest how others can import their library
and also if it utilizes external libraries by specifying dependencies on other ex-
isting packages. As packages can depend on one another through manifests,
package repositories implicitly form a complex network, known as a Package
Dependency Network (PDN) (Decan et al. 2018a; Hejderup 2015; Kikas et al.
2017).

In light of repository-wide incidents such as the left-pad package re-
moval (Schlueter 2017), the hiding of a bitcoin wallet stealer in the legitimate
event-stream package (Baldwin 2018), and malicious typosquatting packages
in PyPI (Dunn 2017), researchers are conducting network analysis of pack-
age repositories for risk assessment (Zimmermann et al. 2019; Decan et al.
2018a; Kikas et al. 2017), sustainability evaluation (Valiev et al. 2018; Decan
et al. 2019), license violations (Duan et al. 2017), and for detecting breaking
changes (Mezzetti et al. 2018; Chen et al. 2020; Mujahid et al. 2020). Con-
structing a PDN for such analyses typically involves mining available manifests
in the repository and then resolving dependency constraints in each manifest
using a specific resolver (i.e., variations of semver) to infer relationships be-
tween packages (Kikas et al. 2017; Hejderup 2015).
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Inferring networks solely from package manifests yields an incomplete rep-
resentation of package repositories. Manifests only describe metadata of pack-
age dependencies and thus miss information on actual source code reuse, mak-
ing network analysis prone to false positives. For example, a project might have
redundant dependencies to packages whose functionality is not used anymore.
Without knowing how packages actually use external libraries, Ponta et al.
(2018) and Zapata et al. (2018)’s work on vulnerability checking packages
demonstrates that metadata-based analysis have limited actionability, making
it difficult for developers to understand how vulnerabilities in external libraries
affect their code. Increasingly, package repository workgroups such as the Rust
Ecosystem WG1 are also calling for more comprehensive network analysis of
package repositories to support code-centric analysis for more effective iden-
tification of critical yet unstable packages (Zhang et al. 2020a; Bogart et al.
2016). One such example is the Libz Blitz (Brian et al. 2020) initiative where
community members come together and contribute to poorly maintained yet
critical packages in Crates.io as an effort to stabilize highly reused code in
the repository.

This work proposes code-centric dependency network analysis by inferring
dependency relationships at the function call level. Call graphs capture how
functions between packages use each other and thus naturally lend themselves
to this objective. We coin networks generated from call graphs Call-based
Dependency Networks (CDNs). To generate a CDN from a package repository,
we devise Präzi, an approach that generates call graphs of packages and
then merges them into a single network with functions embedding package
qualifiers. The result is a more fine-grained dependency network that improves
over current PDN analyses by examining the actual package dependencies in
use.

We implement Präzi for Crates.io to demonstrate the feasibility of our
approach. Unlike repositories hosting analyzable binaries such as Maven Cen-
tral, Crates.io requires large-scale compilation of the repository to produce
binaries for call graph generation. The resulting CDN comprises 90% of all
compilable packages, achieving a near-complete representation of Crates.io.
Then, inspired by Kikas et al. (2017)’s PDN study, we characterize and derive
new insights on the evolution of Crates.io. We also compare CDNs against
dependency networks derived from conventional metadata to understand their
differences and similarities for dependency network analyses. Lastly, we man-
ually investigate 34 direct and transitive package relationships to understand
how reliably a CDN represents actual use of dependencies in the source code.

Our results find that one in two function calls in Crates.io are a call from
a package to a dependency, suggesting high code reuse. On average, we find
that a package calls at least one function in 78.8% of its direct dependencies
and at least one function in 40% of its transitive dependencies, suggesting
that more than half of all transitive dependencies of packages are potentially
not called. When looking at APIs, packages have three times more indirect

1 https://github.com/rust-lang-nursery/ecosystem-wg

http://web.archive.org/web/20201201224020/https://github.com/rust-lang-nursery/ecosystem-wg
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(i.e., transitive) callers than direct callers. On average, a package has two new
function calls every six months. Moreover, the number of calls from a package
to its dependencies increases by 6.6 new direct calls and 12.2 indirect calls
every six months. Reachability analysis reveals that a majority of packages
in Crates.io have no or limited reachability. Only a handful packages (i.e.,
0.37% of packages in 2020) are reachable by more than 10% of Crates.io.
Among the most central packages, the most reachable function can reach up to
30% of all packages in Crates.io. The high indirect use of APIs in transitive
dependencies of packages could constitute an important but missing confound-
ing variable in API studies and manifest as an important threat to security
and stability in practice.

The metadata-based networks and call-based networks report similar re-
sults for analysis involving direct package relationships. However, notable dif-
ferences exist between the studied networks for transitive dependencies and
for analyzing the most dependent packages. Metadata networks report twice
the number of transitive dependencies than the CDN. Our findings in the
manual analysis indicate that the high variance is a result of transitive depen-
dencies not being indirectly reachable (utilized) from the package. A package
uses a subset of its direct dependencies—not all available functionality. Thus,
analysis of transitive dependencies is not generalizable but contextual. Two
packages that depend on the same library and have two different use cases
are likely to use their transitive dependencies differently. Thus, dependency
checkers, such as GitHub’s Dependabot2 and Rust’s cargo-audit3, should
consider augmenting their recommendations with call graph information to
help developers make more informed decisions and reduce false positives. As
a step towards inferring networks from the source code of package reposito-
ries, Präzi can enable both researchers and practitioners to estimate complex
patterns of relationships between packages and their functions.

In summary, this work makes the following contributions:

– An approach to create call-based package dependency networks (CDNs)
called Präzi.

– An open-source implementation for generating CDN of Rust’s Crates.io
– An empirical study describing the structure, evolution, and fragility of

Crates.io from a package and function view.
– A comparison of network analyses using Präzi CDN, metadata network,

and compile-validated network.
– Two datasets for replication: CDNs for Crates.io and dataset of all gen-

erated call graphs.

For the reproducibility of our approach, generated CDNs, and study, we
have made the source code, the processing scripts and our data publicly avail-
able in a replication package available (Hejderup et al. 2021).

2 https://dependabot.com/
3 https://github.com/RustSec/cargo-audit

http://web.archive.org/web/20201201220347/https://dependabot.com/
http://web.archive.org/web/20201201224403/https://github.com/RustSec/cargo-audit
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2 Background

2.1 Related Work

Analyzing package repositories from a network perspective has become an im-
portant research area in light of numerous incidents such as the removal of the
left-pad package in npm and recent moves to emulate such problems on pack-
age dependency networks (Kikas et al. 2017; Kula et al. 2018a; Decan et al.
2019; Zerouali et al. 2018). The aftermath of the left-pad incident (Schlueter
2017) in 2016 raised questions on how the removal of a single 11 LOC pack-
age downloaded over 575, 000 times could break the build for large groups of
seemingly unrelated packages in npm. To understand how certain packages
exhibit such a large degree of influence in package repositories, Kikas et al.
(2017)’s network analysis of three package repositories—npm, Crates.io, and
RubyGems—uncovered that package repositories have scale-free network prop-
erties (Albert and Barabási 2002). As a result of a large number of end-user
applications depending on a popular set of packages (such as the babel com-
piler), these popular yet distinct packages become hubs in package dependency
networks. Packages that act as hubs are not isolated packages; they also de-
pend on small and common utility packages such as left-pad that appear as
transitive dependencies for end-users. By reversing the direction of package
dependency networks, (Kikas et al. 2017) identify that utility packages are
highly central in package dependency networks with the power to affect more
than 30% of all packages in the studied repositories.

In a comprehensive study of the evolution of package repositories, Decan
et al. (2019) observe that three out of seven studied repositories have superlin-
ear growth of transitive relationships, forming and strengthening new network
hubs over time. Half of the packages in Crates.io, npm, and, NuGet had in
2017 at least 41, 21, and 27 transitive dependencies, nearly two times more
than their respective number in 2015. Although Decan et al. (2019) finds that
the number of dependencies a developer declares in an application remains
stable over time, the increasing number of transitive relationships in package
repositories is still an active phenomenon after the left-pad incident. Apart
from understanding the structure and evolution of package repositories, re-
searchers have also studied known security vulnerabilities (Decan et al. 2018a;
Zimmermann et al. 2019), maintainability (Valiev et al. 2018; Cogo et al. 2019;
Zerouali et al. 2018), software reuse (Abdalkareem et al. 2019, 2017), and more
recently breaking changes (Mezzetti et al. 2018; Mujahid et al. 2020) from a
network perspective. Zimmermann et al. (2019) report that 40% of npm in-
clude a package with a known vulnerability, suggesting that npm forms a
large attack surface for hackers to exploit. Despite developer awareness on
using trivial and simple packages after the left-pad incident, Abdalkareem
et al. (2019) still find a prevalent number of applications depending on trivial
packages: 10% of npm and 6% of PyPI applications on GitHub depends on
at least one package with less than 35 LOC.
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Network analysis of packages commonly makes use of metadata from pack-
age manifests to calculate the impact and severity of measured variables. Ponta
et al. (2018)’s work on building a security dependency checker using call graphs
highlights the limitations of using metadata and the importance of studying
package dependencies with a contextual lens. Typically, a subset of an API
is vulnerable—not the entire package—and how clients interact with API’s is
also highly contextual. Zapata et al. (2018) observed through manual analysis
that 75% of 60 warned JavaScript projects did not invoke the vulnerability.
As an alternative to vulnerability detection through call graphs, Chinthanet
et al. (2020) explores the idea of building hierarchical structures of applica-
tions and their dependencies for Node.js. To pitch for code-centric instead of
metadata-based representations of package repositories, Hejderup et al. (2018)
propose dependency networks based on function calls which we concretize in
this work.

By embedding function call relationships into package dependency net-
works, we aim to also bridge the gap between API and package repository
research. Notably, Präzi could resolve the limitation of studying immediate
API calls to include chains of API calls (i.e., transitive calls) such as in Robbes
et al. (2012)’s work on determining the ripple effects on deprecated APIs in the
Smalltalk ecosystem. Similarly, combining qualitative studies such as looking
into deprecation (Sawant et al. 2018c,a), breakages (Raemaekers et al. 2017;
Xavier et al. 2017; Bogart et al. 2016), and migration patterns (Zhong et al.
2010; Nguyen et al. 2019) with network analyses could provide an additional
empirical dimension in such studies. In support of this, Zhang et al. (2020b)’s
need-finding study calls for tooling that supports API designers with data-
driven recommendations, for example, on when to deprecate an API.

2.2 Rust Programming Language

Rust is a relatively new (first stable release 1.0 in 2015)4 systems programming
language that aims to combine the speed of C with the memory safety guaran-
tees of a garbage-collected language such as Java. Rust is also unique because
its package management system (Cargo) was designed from the ground-up to
be part of the language environment (Katz 2016). Cargo not only manages
dependencies but prescribes a build process and a standardized repository lay-
out which helps facilitate the creation of automated large-scale analyses such
as Präzi. Every Cargo package contains a file called Cargo.toml, specifying
dependencies on external packages. Moreover, with Crates.io, there is one
central place where all Rust packages (so-called “crates”) live. As of 13 August
2020, Crates.io is the fifth most fast-growing package repository hosting over
44, 745 packages and averaging 60 new packages per day.5

4 https://blog.rust-lang.org/2015/05/15/Rust-1.0.html
5 http://www.modulecounts.com/

http://web.archive.org/web/20180416152826/https://blog.rust-lang.org/2015/05/15/Rust-1.0.html
http://web.archive.org/web/20201201224023/http://www.modulecounts.com/
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Fig. 1: Different granularities of dependency networks.

2.3 Call-based Dependency Networks

We distinguish two kinds of dependency networks, shown in Figure 1: i) coarse-
grained Package-based Dependency Networks shown in Figure 1a, similar to
what dependency resolution tools (e.g., Cargo or Maven) build internally or
what researchers have used in the past, and ii) fine-grained Call-based Depen-
dency Networks shown in Figure 1b, which we advocate in this paper.

Figure 1a models an example of an end user application App, which directly
depends on Lib1 and transitively depends on Lib2. In such a PDN, each node
represents a versioned package. An edge connecting two nodes denotes that
one package imports the other, for example App 1.0 depends on Lib1 3.2.

Figure 1b consists of three individual call graphs for App, Lib1, and Lib2.
Each of these call graphs approximate internal function calls in a single pack-
age. Every node represents a function by its name. The edges approximate
the calling relationship between functions, e.g., from main() to foo() within
App in Figure 1b. However, the function identifiers bear no version, nor do
they have globally unique identifiers (e.g., there are two intern() functions
in Figure 1b). We merge these two graph representations to produce a CDN:

Definition 1 A Call-based Dependency Network (CDN) is a directed
graph G = 〈V,E〉 where:
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1. V is a set of versioned functions. Each v ∈ V is a tuple 〈id,ver〉, where
id is a unique function identifier and ver is a float value depicting the
version of the package in which id resides.

2. E is a set of edges that connect functions. Each 〈v1,v2〉 ∈ E represents a
function call from v1 to v2.

Applying the above definitions, the function used() in Figure 1b be-
comes a node with the fully qualified identifier 〈Lib2::used, 0.2〉 ∈ V .
The dependency between App and Lib1 is represented as 〈〈App::foo, 0.1〉,
〈Lib1::bar, 3.2〉〉 ∈ E.

CDNs offer a white-box view of the more coarse-grained PDNs. In par-
ticular, we can see that unused() is never called. If unused() was affected
by a vulnerability, we can deduce from Figure 1b that we should not issue a
security warning for App, since it does not use the affected functionality. In
contrast to the CDN, the PDN in Figure 1 by its nature cannot provide such
a fine-grained precision level.

3 Präzi: Generating CDNs from Package Repositories

In this section, we describe a generic approach, Präzi, to systematically con-
struct CDNs for package repositories. Präzi can be applied to any program-
ming environment that features i) a way of expressing dependency information
between packages, and ii) tooling to generate call graphs for a package.

Präzi constructs a CDN in a two-phase process illustrated in Figure 2.
In the first phase, Call Graph Generation (step 1 , 2 , and 3 ), Präzi gener-
ates a static dataset of annotated call graphs from packages in a repository.
In the second phase, Temporal Network Generation (step 4 and 5 ), Präzi
first generates an intermediate package dependency network by resolving de-
pendencies between packages at a user-provided timestamp t, and then unifies
the call graphs of resolved packages into one temporal call-based network, the
CDNt.

3.1 Call Graph Generation

Local Mirror Package managers keep an updatable index of package reposi-
tories to lookup available packages and their versions. Präzi uses such indices
to extract and download available packages in step 1 in order to create lo-
cal mirrors of repositories (i.e., clones of repositories). A minimal local mirror
needs to contain the manifest and publication (or creation) timestamp for each
version of a package.

Package Call Graphs A call graph is a data representation of relationships
between functions in a program and serves as a high-level approximation of its
runtime behavior (Ryder 1979; Ali and Lhoták 2012). From a static analysis
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Fig. 2: Generic approach to generate CDNs from package repositories

perspective, a call graph is useful for investigating and understanding interpro-
cedural communication between code elements (i.e., how functions exchange
information). In Präzi, we view a call graph as a partial graph of a resulting
CDN. We increase the scope of a call graph from a single package (i.e., pro-
gram) to a package and its dependencies. We denote inter-package function
relationships as the actual specific code resources that packages use between
each other (i.e., a dependency relationship at the function granularity) and are
first-class citizens in CDN analyses. The call from Lib1::bar to Lib2::used

in 2 exemplifies an inter-package function relationship. Präzi requires nodes
in call graphs to have function identifiers with fully resolved return types and
arguments.

In the presence of dynamic features, such as virtual dispatch or reflection,
there are implications to the precision and soundness of call graphs that in-
directly also affect generated CDNs. Theoretically, it is impossible to have
both a precise and sound call graph of a program. Thus, Präzi uses soundy
call graph algorithms that follow a best-effort approach for the resolution of
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most language features (Livshits et al. 2015). Precise yet unsound call graph
algorithms could miss actual inter-package function calls, making certain de-
pendency analyses (e.g., security) of CDNs incomplete. Examples of soundy
call graph algorithms for typed languages include subclasses of Class Hier-
archy Analysis (CHA) (Tip and Palsberg 2000; Sundaresan et al. 2000) and
Points-to analyses (Steensgaard 1996; Shapiro and Horwitz 1997; Emami et al.
1994) such as k-CFA (Shivers 1991). In the case of untyped languages such as
Python or JavaScript, a middle-ground is hybrid approaches combining both
dynamic analysis and static analysis such as Alimadadi et al. (2015)’s Tochal
or Salis et al. (2021)’s PyCG.

Annotating Call Graphs To prepare call graphs for unification, we need
to rewrite function identifiers in each package call graph so that they are
globally unique. Without annotating function identifiers, inconsistencies can
arise from packages that have identical namespaces and multiple versions of the
same package in a dependency tree. Präzi solves these issues by annotating
the function names, return types, and argument types in function signatures
with three components: i) repository name, ii) package name, and iii) static
or dynamic (i.e., constraint) package version.

For each function signature in a call graph of a package version, Präzi
maps each type identifier found in the signature to the package that declares
it. There are three potential mappings of a type identifier to a package that
do not reside in the standard library of the language:

– Local, resulting in an annotated qualifier with the repository name, and its
package name and version as exemplified in io::crates::Lib1v1.5::bar.

– Dependency with a static version, resulting in an annotated qualifier
with the repository name, and the name and version of the dependency.

– Dependency with a dynamic version, resulting in an annotated qual-
ifier with the repository name and name of the dependency. However the
version is missing as exemplified in io::crates::Lib2<?>::used in 3 .

The first two mappings denote a resolved type annotation, and the last
one is an unresolved type annotation. Function identifiers with unresolved
type annotations have their dynamic versions resolved to a specific version at
dependency resolution time (i.e., at the Temporal Network Generation phase).
Finally, Präzi splits the annotated call graph into two sections, one immutable
section containing resolved function signatures, and another section containing
unresolved function signatures. The annotated call graphs are then stored
in a dataset. The final dataset should contain all downloaded packages that
include creation timestamp, manifest file, and annotated call graph with global
identifiers.

3.2 Temporal Network Generation

Retro-active Dependency Resolution To study the evolution of the rela-
tionships between packages in a repository, we perform retroactive dependency
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Fig. 3: Retro-active dependency resolution

resolution 4 that generates a concrete dependency network valid at a given
timestamp t. The use of dynamic versions in package manifests complicates
network generation of package repositories. During resolution time of package
dependencies, a dynamic version instructs the dependency resolver to fetch the
most recent version within its allowed version boundary, making the relation-
ship between packages contemporary. Package A depending on the dynamic
version 1.∗ of package B that satisfies any version with a leading 1. (e.g.,
1.0,1.8, or 1.20.2 ) in Figure 3a exemplifies a dynamic version. Given that
Package B releases version 1.1 at t1 and 1.2 at t2 (t1 < t2) in Figure 3b. At t,
where t1 < t < t2, a dependency resolver will select version 1.1. However, at
t > t2, it will select version 1.2, highlighting the temporal changes in package
relationships.

Given a timestamp t, Präzi creates a subset mirrort of our local mirror
(i.e., copy of the Crates.io index) containing packages and versions with a
creation timestamp tc satisfying tc ≤ t. Then, for each package version man-
ifest file in mirrort, we resolve its dependencies using a dependency resolver.
Dependency resolvers are usually integrated into package managers and are
available as independent libraries.

Call Graph Unification The unification is a two-phase process. In the first
phase, we build a resolved dependency tree for each package version in mirrort
and then perform a level-order traversal of each tree to merge call graphs of
child nodes with their parent nodes. The output is a unified call graph of
statically dispatched function calls for each package version in mirrort. In the
merge phase of a parent and a child call graph, we complete the unresolved
function identifiers in the parent call graph with the resolved version available
in the child node. The function io::crates::Lib2v0.2::used in 5 replaces
the unresolved function io::crates::Lib2<?>::used in 3 with v0.2.

In the second phase, we need to deal with dynamically dispatched func-
tions and localize call targets across package boundaries. To illustrate this
process, we introduce the following scenario: Package A depends on package
B and package C. Both B and C depend on the library serde. Furthermore, B
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has a class Foo that implements the function serialize() in the Serialize

interface of serde. C has a function called bar() that takes a Serialize-like
object as an argument and invokes the dynamically-dispatched serialize()

call on the object.
Before merging the call graphs (i.e. first phase), bar() is only aware of call

targets that are within C. In this example, there are no call targets available
(i.e., there is no function implementing serialize() in C). Thus, in the second
phase, we search for other compatible function implementations across pack-
ages that are available after merging their call graphs. Here, we would create
a call target from bar() in C to the serialize() implementation in Foo in
B. It is possible that A may never pass an object of Foo from B to function
foo() in C in practice. However, the second phase is necessary to ensure that
dynamically dispatched functions remain sound after merging all call graphs
together.

After constructing a package-level call graph for each package version in
mirrort, we merge all partial call graphs into a single CDN. The process
consists of aggregating all package-level call graphs and then merging them to
remove duplicate nodes and edges. The result is a CDN corresponding to the
package repository at the given timestamp t.

4 Implementing Präzi for Crates.io

We implement Präzi for Crates.io, the official package repository for Rust.
Unlike mainstream package repositories such as Maven Central, PyPI, npm,
and NuGet, Crates.io do not host pre-built binaries but the source code of its
packages. To generate call graphs for Rust packages, we need to first perform a
large-scale compilation of Crates.io and then extract call graphs from gener-
ated binaries. Attempting to reproduce the build of a piece of software is known
to be challenging (Suĺır and Porubän 2016), Tufano et al. (2017)’s compilation
of 219, 395 Apache snapshots yielded a success rate of 38%, and Martins et al.
(2018)’s compilation of 353, 709 Github Java projects yielded a success rate
of 56%. An overall low success rate could potentially endanger representative
studies of Crates.io.

In the remainder of this section, we describe key implementation choices
and results from our large-scale compilation of Crates.io.

Creating a local mirror We clone a snapshot of Crates.io’s official git-based
index6 at revision 6c550c8 (14th February 2020) containing 35, 896 packages,
208, 023 releases, and 1, 151, 001 dependency relationships. By validating the
dependency specification in the index for invalid names or dependency con-
straints, we can save resources by avoiding building broken releases. We iden-
tify 1, 506 releases from 201 packages having dependencies that do not match
existing packages, and 5, 667 releases from 4, 427 packages having dependencies
with unsolvable constraints (i.e., no available versions for the constraint)

6 https://github.com/rust-lang/crates.io-index

https://web.archive.org/web/20180224105846/https://github.com/rust-lang/crates.io-index
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The documentation hosting service for Crates.io, Docs.rs,7 provides
Rust users API documentation for every published package release. In addition
to automatically generating documentation for package releases, Docs.rs also
documents the build log and compile status publically. We create a web scraper
that extracts the build status on Docs.rs for each release in our dataset. In to-
tal, we found that 43, 893 indexed releases belonging to 10, 154 packages have
build failures, amounting to 20% of Crates.io. In addition to the Crates.io
index, we use Docs.rs as externally validated metadata source in our study.

After subtracting build failures and invalid dependency specifications, our
final index amounts to 156, 484 releases from 29, 480 packages. Lastly, we use
the official API at https://crates.io/api/v1/crates to download all pack-
ages and their creation timestamp (not available in the index).

Choosing a Call Graph Generator There are two approaches for construct-
ing a call graph from a Rust program, the higher-level LLVM analysis,8 and
the lower-level MIR analysis (Matsakis 2016). Rust functions and its calls
are either of monomorphized (i.e., static dispatch) or virtualized (i.e., dy-
namic dispatch) nature. From the documentation9 and a comprehensive bench-
mark (Triantafyllou 2019), we can learn that there are two monomorphized fea-
tures, macros10 and generic functions, and two virtualized features, trait
Objects,11 and function pointers,12 that dispatch functions in Rust.

As part of the output in compilation of Rust programs, we can use the
optionally generated LLVM IRs13 to build call graphs using the LLVM call
graph generator14 or cargo-call-stack (Aparicio 2019). Due to the absence
of Rust-specific type information in LLVM IRs,15 call graph generators can
only resolve monomorphized features and cannot provide complete type in-
formation needed in Präzi. By analyzing at the MIR level instead of the
LLVM level, rust-callgraphs16 offers a more feature-complete call graph
by implementing a CHA algorithm and is our choice for building CDNs. In
addition to monomorphized features, it can resolve function calls dispatched
through Trait Objects, making it a more soundy choice over the LLVM-
based call graph generators. Although rust-callgraphs does not support
function pointers, it is a negligible trade-off as the documentation17 state
that function pointers are mostly useful for calling C code from Rust.

7 https://github.com/rust-lang/docs.rs
8 https://llvm.org/docs/Passes.html
9 https://doc.rust-lang.org/book/ch03-03-how-functions-work.html

10 https://doc.rust-lang.org/stable/reference/macros.html#trait-objects
11 https://doc.rust-lang.org/stable/reference/types.html
12 https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html
13 https://doc.rust-lang.org/rustc/command-line-arguments.html#

--emit-specifies-the-types-of-output-files-to-generate
14 http://llvm.org/doxygen/CallGraph_8h_source.html
15 https://github.com/rust-lang/rust/issues/59412
16 https://github.com/ktrianta/rust-callgraphs
17 https://rust-lang.github.io/unsafe-code-guidelines/layout/

function-pointers.html

http://web.archive.org/web/20201201224106/https://crates.io/api/v1/crates
http://web.archive.org/web/20201201224058/https://github.com/rust-lang/docs.rs
https://web.archive.org/web/20180517123938/https://llvm.org/docs/Passes.html
http://web.archive.org/web/20201201224110/https://doc.rust-lang.org/book/ch03-03-how-functions-work.html
http://web.archive.org/web/20201201220221/https://doc.rust-lang.org/stable/reference/macros.html
http://web.archive.org/web/20201201220211/https://doc.rust-lang.org/stable/reference/types.html
http://web.archive.org/web/20201201220224/https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html
http://web.archive.org/web/20201201220255/https://doc.rust-lang.org/rustc/command-line-arguments.html
http://web.archive.org/web/20201201220255/https://doc.rust-lang.org/rustc/command-line-arguments.html
http://web.archive.org/web/20201201220252/http://llvm.org/doxygen/CallGraph_8h_source.html
http://web.archive.org/web/20201201224720/https://github.com/rust-lang/rust/issues/59412
https://github.com/ktrianta/rust-callgraphs
http://web.archive.org/web/20201201220303/https://rust-lang.github.io/unsafe-code-guidelines/layout/function-pointers.html
http://web.archive.org/web/20201201220303/https://rust-lang.github.io/unsafe-code-guidelines/layout/function-pointers.html
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Table 1: Build statistics

Build #Releases #Packages Time (hrs)

Crates.io index 208, 023 35, 896 —

Docs.rs 156, 484 (-24.78%) 29, 480 (-17.87%) —
rust-callgraphs 142, 301(-9.06%) 23, 767 (-19.38%) 10 days

For annotating call graphs, the metadata in call graph nodes contains pack-
age information and access identifiers. Moreover, the complementary type hier-
archy output contains complete type information for creating resolved function
identifiers. We also keep the edge metadata that includes dispatch information
(i.e., static, dynamic, or macro) in the annotated call graphs.

Large-Scale Compilation of Crates.io Some Rust packages depend on ex-
ternal system libraries such as libavcodec or libxml2 to successfully com-
pile. Knowing which external libraries to install for compiling such pack-
ages is a manual and tedious process. Luckily, the Rust infrastructure team
maintains a Docker image, rust-lang/crates-build-env, that bootstraps
a Rust build environment pre-installed with community curated systems li-
braries, increasing the chances for successful compilations. We use Rustwide,
an API for spawning Rust build containers, and configure it to use rustc

1.42.0-nightly compiler together with rust-callgraphs’s compiler plugin.
After compilation, we use the analyzer component in rust-callgraphs to
generate and store the call graphs in our dataset.

We set up a compilation pipeline on four build servers running 34 docker
containers to compile packages and build call graphs. It took 10 days to com-
plete it. Table 1 shows the compilation results in comparison with index entries
and Docs.rs results. Overall, our call graph corpus (CG Corpus) has a call
graph for 90% of all compilable versions (70% of all indexed versions) and at
least one version for 80% of all packages built by Docs.rs. The high success
rate showcases the practical feasibility of Präzi for Crates.io.

Dependency Resolution For each Cargo.toml manifest in our downloaded
dataset, we extract dependencies intended for source code use. These include
library dependencies (i.e., [dependencies]), platform-specific dependencies
(i.e., [target]), and also enabled optional dependencies in [features].
Both Kikas et al. (2017) and Decan et al. (2019) do not take into account
both enabled optional dependencies and platform-specific dependencies, con-
sidering only library dependencies when analyzing Crates.io.

The Cargo.toml manifest supports specifications of dependencies using
the semver schema (Preston-Werner 2013). A version is a three-part version
number: major version, minor version, and patch version. An example of a ver-
sion is 1.0.0. An increase in the major number denotes incompatible changes,
an increase in the minor number denotes backward-compatible changes, and

http://web.archive.org/web/20201201224730/https://github.com/rust-lang/crates-build-env
http://web.archive.org/web/20201201224727/https://github.com/rust-lang/rustwide
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an increase in the patch number denotes small bug fixes. With the support of
range operators (i.e., dynamic version) in dependency specifications such as
caret (e.g., ∧1.0.0), tilde (i.e., ∼ 1.0.0), wildcard (e.g., 1.∗), and ranges (e.g.,
> 1.0.0. <= 2.0.0), the dependency resolver in Cargo will attempt to re-
solve the latest version satisfying the constraint. When multiple constraints of
the same dependency appear in the dependency tree, Cargo first attempts to
find the most recent version satisfying all constraints. For example, for the two
constraints, log 0.4.* and log 0.4.4, the dependency resolver will resolve log

0.4.4. However, for example, if the resolver has to resolve log 0.4.* and log

0.5.*, there is no single compatible version that matches both constraints. In-
stead, the resolver will include two versions of the same dependency (e.g., log
0.4.4 and log 0.5.5 ) through name mangling to avoid conflicts (Katz 2016).
The resolution strategy of having multiple versions of the same dependency is
similar to npm.18

To emulate dependency resolution in Rust, we use the native Rust-
implementation of the semver library for use in Python by invoking its na-
tive implementation through FFI (Foreign Function Interface) bindings. Thus,
we resolve dependencies and their constraints using the same library as the
Cargo package manager. For every timestamp t in the CDN generation pro-
cess, we set the resolution to solve the latest version available at t satisfying
the constraint.

5 Structure and Evolution of the Crates.io CDN

We address three research questions to contrast the similarities and differences
when using three different network sources (i.e., metadata, compile-validated
metadata, and control-flow data) for characterizing the structure and evolution
of Crates.io. In addition to comparing the networks, we also investigate how
reliably package-based dependency networks mirror the use of dependencies
in the source code.

5.1 Research Questions

RQ1: What are the network characteristics of Crates.io?

We characterize the calling relationship between packages in Crates.io,
and then identify various influential packages featuring a high number of callers
and callees within the networks. Specifically, we describe our data corpus and
the degree distribution to gain an overall understanding of the direct relation-
ship between functions for a large package repository such as Crates.io.

18 http://npm.github.io/npm-like-im-5/npm3/dependency-resolution.html

https://crates.io/crates/semver
https://web.archive.org/web/20210426093903/http://npm.github.io/npm-like-im-5/npm3/dependency-resolution.html
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RQ2: How does Crates.io evolve?
The frequent number of new package releases and the adoption of semver range
operators in dependency specifications make the relationship between pack-
ages highly temporal in Crates.io. We capture these dynamics using both a
package-level perspective and the more fine-grained, function-level perspective.
In comparison to previous studies (Kikas et al. 2017; Decan et al. 2019), we
use three different sources, namely metadata, compile-validated metadata, and
control-flow data, to understand their differences and similarities for package-
based dependency analysis.

As all our snapshots deviate from a normal distribution according to Shapiro-
Wilk (p < 0.01 ≤ α), we use the non-parametric Spearman correlation (ρ)
coefficient for correlation analysis. Using Hopkins’s guidelines (Hopkins 1997),
we interpret 0 ≤ |ρ| < 0.3 as no, 0.3 ≤ |ρ| < 0.5 as a weak, 0.5 ≤ |ρ| < 0.7 as
a moderate, and 0.7 ≤ |ρ| ≤ 1 as strong correlation We answer the following
sub-RQs using a package-level and call-level perspective:

RQ2.1: How do package dependencies and dependents evolve?
RQ2.2: How does the use of external APIs in packages evolve?
RQ2.3: How prevalent is function bloat in package dependencies?
RQ2.4: How fragile is Crates.io to function-level changes?

For deciding on reasonable time points for evolution studies of package
repositories, we include a guideline with analysis in Appendix A.

RQ3: How reliable are dependency networks?

A dependency network approximates how packages use each other in a
repository. Both metadata-based networks and call-based networks have trade-
offs and limitations that affect how reliable they estimate actual package re-
lationships. To understand how accurate these networks are in practice, we
perform a manual analysis of 34 random cases where a metadata-based and
call-based dependency network infers relationships differently. The cases in-
volve both direct and transitive package relationships.

5.2 RQ1: Descriptive Analysis

5.2.1 Summary of Datasets

Before investigating the calling relationship among packages in Crates.io, we
first describe our datasets of generated call graphs (i.e., CG Corpus) and our
largest CDN dated February 2020 in Table 2. After removing all function calls
to the standard libraries of Rust, the call graph corpus has over 121 million
functions and 327 million function calls from 142, 301 compiled releases. When
merging call graphs into a CDN, we generate a compact representation with
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Table 2: Summary of Datasets

CG Corpus CDN Feb’20

Functions 121,825,729 44,190,643

. . . public access 46,236,696 20,157,155

. . . private access 75,589,033 24,033,488

Call edges 327,535,934 216,239,360

Intra-Package Calls 169,579,315 102,136,956
. . . macro invocation 693,148 356,329
. . . static dispatch 28,570,266 20,650,000
. . . dynamic dispatch 140,315,901 83,130,627

Inter-Package Calls 157,956,619 114,102,404
. . . macro invocation 7,183,797 2,178,547
. . . static dispatch 29,650,173 13,319,367
. . . dynamic dispatch 121,122, 649 98,604,490

over 44 million functions and 216 million function calls, a sizeable reduction of
2.5 and 1.5 times of the CG Corpus (i.e., functions and calls), respectively.

Table 2 also breaks down function calls into their dispatch type, namely
macro, static, and dynamic calls. Notably, nearly 80% of all edges in the CG
Corpus are of a dynamic dispatch type, followed by static dispatch (18%) and
macro invocations (2%). The high number of dynamically dispatched calls in
the network indicates that Crates.io has a large pool of possible target imple-
mentations to virtual functions—not necessarily magnitude more function calls
than statically dispatched calls. When comparing the access modifiers between
functions, we can see that 40% of all functions inside Crates.io are publicly
consumable. Also, we can see that calling functions in external packages is
widespread in Crates.io; half of all the function calls invoke a function from
an external package (i.e., inter-package call). Unlike the other two dispatch
forms, 91% of all macro dispatched calls exclusively target macros defined in
external packages. Overall, the high number of declared public functions and
the large degree of inter-package calls indicate that code reuse in the form of
functions between packages is a prevalent practice in Crates.io.

Function reuse is prevalent; 40% of functions are public and 49% of call
edges target a dependency.

5.2.2 Function Call Distribution

Figure 4 presents the degree distribution for all function calls grouped by their
dispatch type, and Figure 5 is a narrowed-down version looking at only inter-
package function calls. The out-degree of a function is the number of function
calls to other unique functions (i.e., number of caller-callee relationships). The
in-degree of a function is the number of callers to a function across Crates.io
(i.e., number of callee-caller relationships). Given a function a() in a package,
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Fig. 4: Degree distribution of all function calls
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Fig. 5: Degree distribution of inter-package function calls

the out-degree looks at what calls a() makes. The in-degree looks at which
functions in Crates.io call a(). As mentioned earlier, inter-package calls are
only function calls between packages (i.e., pruning all internal calls). The out-
degree distribution for dynamic dispatch represents the number of possible
target functions in a virtual method table,19 and, for static- and macro dis-
patch, the number of function calls. The in-degree distribution presents the
aggregated number of callers for a function (i.e., callee) and implementations
of virtual functions for dynamic dispatch, respectively. Overall, we can ob-
serve a long tail for both the in-degree and the out-degree of each dispatch
mechanism, suggesting that the Crates.io CDN is a scale-free network with
the presence of a few nodes that are highly connected to other nodes in the
network (i.e., hubs). Finally, Tables 3 to 5 describe the top 5 functions with
the highest in-degree and out-degree calls per dispatch type. The top 5 list
is an aggregation of functions per package. For example, the serde package
in Table 4 has over 300 serialization functions with an in-degree similar to
264, 281. Thus, we present the top 5 functions as the top most called func-
tion(s) per package. In the following, we describe key results for each of the
three dispatch forms.

19 https://alschwalm.com/blog/static/2017/03/07/exploring-dynamic-dispatch-in-rust/

https://web.archive.org/web/20201112013908/https://alschwalm.com/blog/static/2017/03/07/exploring-dynamic-dispatch-in-rust/
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Table 3: The top 5 functions with most statically-dispatched calls

Outdegree Indegree
Package Function # Package Function #

epoxy load with 1,625 serde missing field 264,281
sv-parser-syntaxtree next, into iter 1,243 log max level 162,747
python-syntax reduce 821 vcell set 125,287
rustpython-parser reduce 720 serde json from str 73,171
mallumo-gls load with 712 futures and then 65,043

Table 4: The top 5 functions with most dynamically-dispatched calls

Outdegree Indegree
Package Function # Package Function #

hyperbuild match trie 15,460 serde deserialize any 307,976
heim-common to base, from base 6,597 serde json from str 268,887
uom to base, from base 6,045 serde urlencoded deserialize identifier 59,737
fpa I1F7, I2F6 3,966 yup-oauth2 token 42,737
rtdlib deserialize 2,470 cpp core cast into 28,278

Static dispatch The median out-degree for statically dispatched function call
is 1 call (mean: 2.25) in both cases and at the 99th percentile being 15 calls
(13 calls for inter-package calls). When comparing the out-degree between
statically dispatched calls in Figure 4 and Figure 5, we can notice that there
are 1865 functions (0.012%) that call more than 100 other internal functions
in Figure 4. The highest number of calls made by a single function in both
plots is to 1625 local functions and 116 external functions, respectively. The
relatively high number of internal function calls among the outliers seems un-
realistic at a first glance. Upon manual inspection of the source code of the
only two packages having functions with an out-degree greater than 1000 (see
Table 3), namely epoxy20 and sv-parser-syntaxtree21, we identify that this
is the result of generic instantiations for creating bindings to the libepoxy (an
OpenGL function pointer manager) and tokens for parsing SystemVerilog files.

The median in-degree for statically dispatched function calls are 1 (mean:
3.6) and the 99th quantile is 24. When omitting all internal calls and consider-
ing only inter-package calls, the median is 2 (mean: 24) and the 99th quantile
is 208. There are three functions having over 100, 000 external calls in Table 3,
serde for serialization, log for logging, and vcell for memory management.
While the first two are the most downloaded and depended upon packages in
Crates.io, vcell stands out for only having nearly 300 dependent packages.
After inspection of the source code of those packages for the specific set call,
we could identify extensive implementations of low-level drivers to interface
various microcontrollers such as the Cortex-M and STM32 series.

20 https://docs.rs/crate/epoxy/0.1.0/source/
21 https://docs.rs/crate/sv-parser-syntaxtree/0.6.0/source/

https://docs.rs/crate/epoxy/0.1.0/source/
https://docs.rs/crate/sv-parser-syntaxtree/0.6.0/source/
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Table 5: The top 5 functions with most macro-dispatched calls

Outdegree Indegree
Package Function # Package Function #

item path segment 19 log log! 205,810
fungi-lang fgi module 18 bitflags impl bitflags! 77,848
syn path segment 17 lazy static lazy static internal! 64,161
device tree source parse data 17 trackable track! 47,648
npy map 17 serde forward to deserialize any method 43,063

Dynamic dispatch We use vtable to refer to all implementations of a virtual
function of a Trait object. In practice, each Trait object points to compati-
ble Trait Implementations (having a vtable with function and other member
implementations). The median number of function targets function vtable is
9 (mean: 42 (all), 32 (inter-package)) for both all function targets and only
inter-package function targets. The main deviation is at the 99th percentile,
the outdegree for all function targets is 800 for all targets, two times higher
than when only considering inter-package function targets. The highest out-
degree function in Table 4 is match trie in the package hyperbuild v0.0.10,
a HTML minification library, having a vtable with 15, 460 function targets.
The function takes as an argument a trie: &dyn ITrieNode<V> Trait, in-
voking get child and get value of the Trait ITrieNode. The Trait is imple-
mented for all forms of HTML entities, explaining this high outdegree value.
In total, there are 38,352 (< 0.94%) functions that populate a vtable with
more than 1000 function targets. Similarly, we can observe 11, 906 (< 0.36%)
inter-package function calls with over 1000 function targets.

The median in-degree for implementing a virtual (i.e. trait) function is
3 (mean: 53) and the 99th percentile is 608. When only considering inter-
package relationships, the median is 3 (mean: 64) and the 99th percentile is
875. As shown in Table 4, the most commonly implemented trait function
stems from serializer packages such as deserialize any in serde, from str

in serde json and deserialize identifier in toml. In addition to serial-
ization functions, we can also observe that 42, 737 functions implement the
trait function token in yup-oauth2 for user authentication with OAuth 2.0.

Macro dispatch When comparing the out-degree for both all and inter-
package calls, we can observe a similar trend between them: the median is
1 (mean: 1.7) and the 99th quantile is 6, suggesting that macro-dispatched
calls are largely inter-package calls. This resonates with our observations
for macro-dispatched calls in Table 2. Looking at functions calling the
most number of macros in Table 5, we can observe that the outdegree
generally is relatively low in comparison to the other two dispatch types. The
function path segement in item makes in total 19 macro calls, the highest
in Crates.io. The median in-degree is 7 (mean: 146) and the 99th quantile
is 1427. When only considering inter-package calls, the median is 12 (mean:
391) and the 99th quantile is 6433. We can observe comparable numbers
to the in-degree with the other two dispatch types in Table 5. With over
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Fig. 6: The evolution of package dependencies on two metadata-based net-
works, Crates.io and Docs.rs, and one call-based network, Präzi.

200, 000 functions in Crates.io calling log!, it is the most called macro
followed by impl bitflags! and lazy static internal!. Generally, we
can observe that the top most called macros belong to popular packages
in Crates.io that are known to simplify logging (log), generate bit flag
structures (bitflags), and wrapping error messages (quick-error).

The median function in Crates.io makes one static call, one macro call
and has a vtable with nine function targets. The median function is also
dependent upon by one static call, one macro call, and implemented by
three functions.

Crates.io is a scale-free network, indicating the presence of a handful
of functions or hubs that are highly connected to other functions in the
repository

5.3 RQ2: Evolution

5.3.1 RQ2.1: How do package dependencies and dependents evolve?

Figures 6 and 7 present the number of direct and transitive package relation-
ships split by network type over time. Each sub-plot also features line plots
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showing the mean with a circle for each snapshot. By using three different net-
work representations, we can understand and contrast the differences between
the three approximations of dependency relationships.

Direct dependencies Direct dependencies refer to the dependencies that a de-
veloper specifies in a package manifest. For each network group in Figure 6a,
we see a marginal growth in the median number of direct dependencies over
time. The median number of dependencies for a package grew from two to
three between 2015-2020 for the Crates.io index network as an example.
The median is also similar in the other two networks. Although there are no-
table differences in the overall spread in the formative years of Crates.io,
the growth curve is relatively comparable between the networks. The correla-
tion between the number of direct dependencies between the three networks
(normalized) yields a significantly strong ρ = 0.89 between 2017 and 2020
(2015-2017: ρ = 0.71), indicating that the networks approximate each other.

When comparing the mean between the CDN and the Crates.io index
network, we find the average package call at least one function in 78.8%22 of
its direct dependencies. As the Crates.io index network has a higher overall
spread than the Docs.rs network, and the Docs.rs network has a higher
overall spread than the CDN, we can derive that the Crates.io network
represents an upper-bound and the CDN a lower-bound on the number of
direct dependencies. With 75% of all packages having less than six direct
dependencies, the results are overall similar to the findings of Decan et al.
(2019) and Kikas et al. (2017).

Package maintainers use 2 to 3 direct dependencies and are unlikely to
increase their use over time. The three networks have comparable results.

Transitive dependencies Transitive dependencies represent the indirect depen-
dencies of a package after resolving its specified dependencies. In comparison
to the direct dependencies, in Figure 6b, we can observe an initial superlin-
ear growth, followed by a period of stabilization (since 2018) for the three
networks. The median number of transitive dependencies in 2015 is 5 for the
Crates.io index network and 1 for the other two networks. The median num-
ber of transitive dependencies grew with a delta of 5 additional packages for
the CDN, 9 for the Docs.rs network, and 12 for the Crates.io index net-
work in five years. While we can find a similar continuing growth trend to
Figure 6a, we observe higher degrees of dispersions between the CDN and
the other two networks. The third-quartile in nearly all CDN snapshots is the
same or below the median of the other two networks. Thus, half the pack-
ages in the Crates.io index network and Docs.rs network report a higher
number of transitive dependencies than 75% of packages in the CDN. When
normalizing the networks and comparing the mean between the CDN and the
Crates.io index network in 2020, we find the average package call at-last

22 after normalizing the networks (i.e., inner join of common packages in all three networks)
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Fig. 7: The evolution of package dependents on two metadata-based networks,
Crates.io and Docs.rs, and one call-based network, Präzi.

one function in 40%23 of all resolved transitive dependencies. The discrepancy
indicates substantial differences between call-based and metadata-based net-
works in network analyses; CDNs will overall report a notably lower number
of transitive dependencies than the metadata-based ones.

Finally, the correlation between the number of transitive dependencies be-
tween the three networks (normalized) is generally strong, with an average
ρ = 0.84 between 2017 and 2020 (2015-2017: ρ = 0.70). In other words, the
more resolved transitive dependencies a package has, the more transitive de-
pendencies it will call (and vice versa). However, we identify a moderate av-
erage correlation ρ = 0.62 between the number of direct dependencies (i.e.,
either metadata-based or call-based) and the number of call-based transitive
dependencies in 2017-2020. In 2015-2017, we observe a general weaker corre-
lation, with ρ = 0.47. Thus, two packages with the same number of direct
dependencies are likely to have different number of transitive dependencies.

The average dependency tree of resolved packages has nearly grown thrice
(5 to 17 transitive dependencies) in 5 years. Substantial differences ex-
ist between the networks; packages are not calling 60% of their resolved
transitive dependencies.

Direct dependents In addition to dependencies, dependents measure the num-
ber of consumers a package has. In the context of this study, we consider a

23 See footnote 22
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consumer as an internal consumer (i.e., a package making use of another pack-
age within Crates.io). Figure 7a presents the number of dependents over
time. Irrespective of the network, we can see that the median number of con-
sumers per package remains unchanged at one over time. Similarly, we can
also find the interquartile ranges of the networks to be identical from June
2017 and onwards. In that period, the top 25% packages have at least three
or more consumers. The correlation between the number of direct dependents
for the three networks (normalized) yields a strong ρ = 0.81 between 2017 and
2020 (2015-2017: ρ = 0.75), indicating (similar to direct dependencies) that
the networks closely approximate each other.

When comparing the mean over time, we see a steady growth of the number
of direct dependents for all three networks. The growth pattern is a result of
a few commonly used packages (e.g., serde and log) having the largest share
of consumers in Crates.io (see also Figure 5). The outliers in the boxplot
represents the top-most used packages for each network. Here, we can observe
notable differences in the range and number of outliers between the networks.
The number of top dependent packages in June 2018 is 651 for the CDN,
1245 for the Docs.rs network, and 1680 for the Crates.io index network.
There are 2.5x more top-dependent packages for Crates.io than in the CDN.
When comparing the top-most dependent packages in each network, the most
consumed package has 566 dependents in CDN, 1735 in the Docs.rs network,
and 2305 in the Crates.io index network. Although the gap between the
outliers in the networks reduces over time (i.e., from 2.5x to 1.8x in 2020),
there are notable differences between the networks when analyzing the top-
most dependent packages in Crates.io.

Overall, the results are similar to the findings of both Decan et al. (2019)
and Kikas et al. (2017), suggesting that an average Crates.io package has a
relatively constant and low degree of consumers in general. While the networks
seem comparable and interchangeable at large, there is a notable discrepancy
between the outliers (i.e., topmost used packages in Crates.io) in metadata-
based networks and call-based networks in earlier snapshots, potentially yield-
ing differences in network analyses of top dependent packages.

The average number of consumers of a package remains at one over time.
Similar to direct dependencies, the networks approximate each other (ex-
cept for top-dependent packages).

Total dependents Figure 7b shows the total number of dependents per package.
The total number of dependents include both direct and transitive dependents.
We omit both June and December 2015 as these snapshots only have 19 and
47 transitive dependents in the CDN, respectively. Except for June 2016, the
median number of total dependents remains constant at two for the three
networks. Thus, in addition to the one median direct consumer in Figure 7a,
packages also have one median transitive consumer. When looking at the top
25% consumed packages, the number of total dependents ranges from 8 or
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Fig. 8: The evolution of the number of functions calls to dependencies and
dependents

more consumers for the Crates.io index network and 7 or more consumers
for the remaining networks. There is also a slight increase in the overall range
at two occurrences for the CDN (Feb’17, Dec’19) and one occurrence for the
Docs.rs network (Dec’17) and the Crates.io index network (Dec’19). When
comparing the mean and outliers between the networks, we find a similar
growth pattern and gap to Figure 7a.

Similar to transitive dependencies, we also find a general strong correla-
tion between the number of transitive dependents between the three networks
(normalized) (ρ = 0.77), and also a moderate correlation between the number
of direct dependents and transitive dependents (ρ = 0.54).

Overall, we see that the total number of dependents remains stable over
time with a few cases of gradual increase. Moreover, we see that the distribu-
tions of dependents are generally much lower in comparison to the transitive
dependency relationships in Figure 6b. Thus, the results indicate that an av-
erage package in Crates.io has a handful stable number of consumers.

The average package also has one transitive consumer that remains un-
changed over time. Similar to direct top-most dependent packages; indi-
rect consumers are using them to a much higher degree than previously.

5.3.2 RQ2.2: How does the use of external APIs in packages evolve?

Figure 8 describes the evolution of the number of direct and transitive inter-
package (i.e., API) calls per package for dependencies on the left-hand side
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and dependents on the right-hand side. When looking at the number of calls
to dependencies over time, we make two major observations. First, the number
of direct and transitive calls to dependencies has an initial superlinear growth,
followed by a period where the growth slows down from December 2018 and
onwards. From December 2016 to December 2019, the number of direct calls
grew from 21 (transitive: 24 ) to 70 (transitive: 116), a three-fold increase in
three years. On average, we also see a growth of 6.6 new function calls to direct
dependencies and 12.2 new indirect calls to transitive dependencies every six
months. Second, we can see that the median number of transitive calls over-
takes the median number of direct calls in December 2018. Our findings unveil
that the amount of calls to indirect APIs are comparable in numbers to calls
of direct APIs. Recent snapshots further indicate that packages invoke more
indirect APIs than direct APIs. The transitive median API calls in December
2019 is 1.6x larger than the median direct API calls.

The average API usage of transitive dependencies is both greater and
comparative to direct dependencies in recent years.

Similar to the total dependents in Figure 6d, we also omit the two snapshots
in 2015 due to an insignificant number of transitive dependents. Generally, we
can observe a continuous growth of the number of direct and transitive con-
sumers of package APIs over time. The median number of consumer grew from
25 callers in 2015 to 38 callers in 2020, an average growth of 1.6 new functions
per year. The median of indirect consumers is larger than that of direct con-
sumers, growing from 55 callers in 2015 to 124 callers in 2020, an average of
8.75 new functions every six months. When comparing the growth pattern be-
tween direct and transitive dependents, the gap between the median of direct
dependents and transitive dependents expands over time. Moreover, we also
find that the interquartile ranges and overall range is greater for transitive
dependents than for direct dependents in all snapshots. A package with tran-
sitive dependents is likely to have more indirect callers than direct callers of
their APIs. Notably, the median number of transitive dependent callers (me-
dian: 114) is three times larger than the median of direct dependent callers
(median: 38) in 2020. When also taking into account the findings of transitive
dependency callers, our results strongly indicate that indirect users of library
APIs is both highly prevalent in Crates.io, and comparable to direct users
of library APIs. Despite the largely unchanged number of direct and total
dependents (See Figure 7) over time, we see indications that developers are
increasingly using more APIs over time.

Packages with transitive consumers have three times more API callers
stemming from indirect consumers than direct consumers.

Below, we summarize the two perspectives of package relationships using
both the metadata-based results with function-based results:



Präzi: From Package-based to Call-based Dependency Networks 27

Dec
'15

Jun
'16

Dec
'16

Jun
'17

Dec
'17

Jun
'18

Dec
'18

Jun
'19

Dec
'19

Feb
'20

100%

10%

1%

0.1%

0.01%P
er

ce
nt

ag
e 

of
 fu

nc
tio

n 
bl

oa
t i

n 
a 

pa
ck

ag
e 

(lo
g)

Fig. 9: Percentage of co-existing functions (i.e., bloat) in Crates.io packages

Dependencies: Packages depend on an increasing number of transitive
dependencies over time. Package maintainers, however, are not declaring
more dependencies. Although there is an increase of new direct and in-
direct API calls to dependencies over time, roughly 60% of all resolved
transitive dependencies are not called.

Dependents: The number of total dependents, one direct and one transi-
tive consumer, remains constant over time. However, consumers have a
growing number of callers over time. For packages with transitive con-
sumers, there is a higher number of calls stemming from indirect callers
than direct callers.

5.3.3 RQ2.3: How prevalent is function bloat in package dependencies?

Packages depending on a growing number of external packages are also likely
to introduce dependency conflicts. Conflicts arise when a dependency resolver
is unable to eliminate the co-existence of a package in a dependency tree due
to version incompatibility. For example, a resolver may arrive that there is
no overlapping version when two packages in a dependency tree depend on
package A where the former specifies a version constraint 1.∗ and the latter
2.∗. Rust’s Cargo package manager avoids such conflicts by allowing multiple
versions of the same package to co-exist in a dependency tree using name
mangling techniques (Katz 2016). A potential drawback of this strategy is
the risk of bloating binaries due to multiple copies of identical yet obfuscated
functions.
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As a proxy for function bloat in binaries, we calculate the percentage of
co-existing functions for all public functions in Crates.io. We denote a co-
existing function as multiple copies of identical function identifiers loaded from
different versions of the same package. It is important to note that the measure
is an estimation and does not guarantee the semantic equivalence of functions.
Before measuring the percentage of co-existing functions, we first inspect the
presence of co-existing functions in all Crates.io packages. On average, we
find packages having at least one co-existing function to be 5.4% of Crates.io
in Dec 2015-Dec 2017 and 28% of Crates.io in Jun 2018-Feb 2020. There are
no packages with co-existing functions in June 2015. Largely non-existent in
the formative years of Crates.io, we find that function co-existing among
dependencies is relatively prevalent in recent years.

Among packages having co-existing functions, Figure 9 breaks down the
percentage of co-existing functions in dependencies of packages over time. We
can observe that the median fluctuates between 0.3% and 1.6% over time, indi-
cating a constant yet insignificant amount of function co-existence in packages.
75% of all packages range between 1 to 10% co-existing functions in their de-
pendencies, suggesting that a majority of packages have a small amount of
possible bloat in their binaries. Thus, bloating of binaries from co-existing
dependency functions are highly unlikely for packages with at least one co-
existing function in Crates.io.

Finally, we find a small minority (i.e., outliers) of packages with a high
degree of possible function bloat between December 2018 and February 2020.
The package reporting the highest bloat of this time frame is downward with
67% bloat. However, it is an invalid outlier as it has a circular dependence on it-
self.24 Thereby, the two packages with highest bloat is const-c-str-impl and
mpris with 43% and 46% bloat, respectively. Upon manual inspection of their
respective dependency tree, we identify that the packages have a dependence
on multiple versions of proc macro, quote, syn, and unicode xid, common
libraries for creating procedural macros. For example, mpris indirectly uses
four different versions of syn and quote.25. We also make similar observations
in three other outliers: js-object (33%), js-intern-proc-macro (41%), and
mockers derive (43%). Further investigation could perhaps reveal whether
the combination of certain procedural macros libraries are highly likely to
always result in bloated dependency tree configurations.

28% of all packages in Crates.io have a co-existing function in their de-
pendencies. Among those packages, between 1-10% of imported functions
from dependencies are bloated.

5.3.4 RQ2.4: How fragile is Crates.io to function-level changes?

Our goal is to identify packages that indirectly reach most of Crates.io
and understand the differences and similarities in using different networks

24 https://crates.io/crates/downwards
25 https://docs.rs/crate/mpris/2.0.0-rc2/source/Cargo.lock

https://crates.io/crates/downwards
http://web.archive.org/web/20201201224352/https://docs.rs/crate/mpris/2.0.0-rc2/source/Cargo.lock
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Fig. 10: Distribution of Package Reachability

Table 6: Most central APIs in the largest component in Dec 2015, Dec 2017,
and Feb 2020

Dec 2015 (size: 534) Dec 2017 (size: 6,004) Feb 2020 (size: 24,857)
Package Function Reach Package Function Reach Package Function Reach
pkg-config::0.3.6 find library 10% log::0.3.8 log 16% log::0.4.10 max level 30%
gcc::0.3.20 Build::new 6% libc::0.2.34 memchr 12% serde::1.0.104 next element 24%
libc::0.2.1 memchr 6% lazy static::0.2.11 get 11% bitflags::1.2.1 fn bitflags 23%
log::0.3.4 static max level 6% bitflags::1.0.1 fn bitflags 8% lazy static::1.4.0 get 21%
bitflags::0.3.3 bitflags 3% unicode-width::0.1.4 width 8% libc::0.2.66 sysconf 18%
gcc::0.3.20 Build::compile 3% serde::1.0.24 deserialize 6.3% libc::0.2.66 isatty 18%
log::0.3.4 log::macros log 6% lazy static::0.2.11 lazy static 5.95% memchr::2.3.2 memchr 18%
gcc::0.3.20 compile library 4% byteorder::1.2.1 write u32 5.1% itoa::0.4.5 Buffer::new 17.5%
time::0.1.34 precise time ns 2.5% libc::0.2.34 localtime r 5% ryu::1.0.2 Buffer::format finite 17%
libc::0.2.1 sysconf 2.5% time::0.1.38 num seconds 4.1% serde json::1.0.48 from str 10%

for impact analyses of package repositories. We use the local reaching cen-
trality (Mones et al. 2012) to measure the reach of individual packages in
the CDN, compile-validated metadata (i.e., Docs.rs), and regular metadata
(Crates.io) networks. With reach, we measure the fraction of Crates.io
packages that depend on a particular package (i.e., its transitive dependents).

Figure 10 presents the evolution of the reach of each package per network.
When comparing the third-quartile between the snapshots, we can observe a
gradual decrease in reachability over time. The decrease is a result of new
packages being added to the network and at the same time not being widely
used by other packages. The top 25% of the distribution of the Crates.io
index network has a ten-fold decrease of 0.07% in June 2015 to 0.008% in June
2019. Both the CDN and Docs.rs distribution also follow a similar pattern. In
comparison to recent years, the higher reach of packages in the formative years
reflects the small network size. In the remaining 75% of packages, they have no
or limited reach of Crates.io irrespective of network choice, indicating that a
majority of packages do not exhibit any influence in Crates.io. However, we
can observe that the range and number of outliers expand over time, indicating
that there is an increasing number of packages that exhibit a degree of influence
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in Crates.io. The number of outliers with greater than 10% reachability grew
from 19 (Docs.rs/CDN: 3) to 92 (Docs.rs: 80, CDN: 66) packages as an
example.

For each snapshot, we can see that the top-most outlier and the number
of outliers is lower than that of the metadata-based network in each network.
The most reachable package in June 2019 reaches 65% in the Crates.io index
network, 61% in the Docs.rs network, and 47% in the CDN network.

Upon inspection of the top 10 highest reaching outliers in each network,
we see that a similar set of packages such as libc, log, lazy static, and
bitflags remains prominent over time across the networks. These packages
are also among the most directly called packages in Section 5.2.2. libc, one
of the most downloaded packages in Crates.io, is the package exhibiting the
highest all-time influence in Crates.io. There are also packages in decline:
rustc-serialize, a serializer package, decreased in reach from its peak of
17% in 2016 to 2% in 2020. A potential explanation for its decline could be
the adoption of serde, a rivaling serializer package, that grew its reach from
6% in 2016 to 42% in 2020.

We derive the ten most influential APIs by measuring the local reach cen-
trality on functions of the CDN for 2015, 2017, and 2020 in Table 6.26 Although
libc exhibit the highest reach at the package-level, functions in log or serde
exhibit higher influence than individual functions in libc. Moreover, we can
see that libc, log, and bitflags have remained important since the inception
of Crates.io. However, we can observe that the most called function changes
over time. For example, log reports three distinctly different API functions.
A possible explanation could be that new features or best practices over time
change the use of APIs. Finally, we can also see a new fast-growing entrant in
2020: serde is second to log.

A large majority of packages in Crates.io have no or limited reachability;
a handful of packages are reachable from 47% of Crates.io, and single
functions are reachable from 30% of Crates.io.

5.4 RQ3: Reliability

We identify two occurrences with significant differences between the studied
networks, namely transitive dependencies and outliers in the top-most depen-
dent packages in RQ2.1. These differences have practical implications on de-
pendency analysis use cases. For example, security-based dependency analysis
such as cargo-audit would generally favor soundness over precision. Failing
to account for an actual dependency relationship could lead to vulnerabili-
ties being undetected. On the other hand, automated dependency updating
such as GitHub’s Dependabot would favor precision over soundness. False-
positive updates steal valuable time from developers (Mirhosseini and Parnin

26 due to presentation reasons, we showcase for only three years
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2017; Beller et al. 2016). Thus, our goal in RQ3 is to obtain an understanding
of how accurate and reliable metadata-based and call-based networks are in
estimating actual relationships between packages.

Selection As packages can have many transitive dependencies and have com-
plex use cases, manually mapping out how packages use each other in a de-
pendency tree is a tedious and error-prone task. Attempting to scale the anal-
ysis to the entire Crates.io is also impractical. Thus, we sample dependency
relationships in packages where both the metadata-based networks and the
call-based networks report differently (e.g., between a package and a depen-
dency, the metadata-network reports an edge between them, and the call-based
network does not). We can then focus our manual investigation on whether
call-based networks are missing function calls due to limitations with static
analysis or whether metadata-based networks over-approximate unused depen-
dencies. Moreover, analyzing a narrow set of direct and transitive dependencies
further reduces the overhead of manually tracking uses of code elements across
packages and their dependencies.

In the span of five workdays, we randomly sampled and reviewed 34 cases,
7 cases involving direct relationships, and 27 cases involving transitive rela-
tionships.

Review Protocol We initiate the review by first finding import statements of
the direct library for the package under analysis and then track successive
uses of imported items in variable assignments and definitions such as func-
tions (e.g., return type) and trait implementations. After mapping out all
use scenarios that trace back to the original set of import statements, we later
can conclude whether a package reuses code from a dependency. The proce-
dures for direct and transitive dependencies are slightly different. For direct
dependencies, we investigate the entire package for any sign of reuse. For tran-
sitive dependencies, we inspect the context of how a package reuses its direct
dependency, and whether the specific reuse of the direct dependency leads to
reuse of the transitive dependency. Given the following example: Package Foo

depends on Bar, and Bar depends on Baz. Foo also reuses Bar, and Bar also
reuses Baz. A function bar() in Bar calls baz() in Baz and foo() in Bar

does not rely on external code. If Foo only calls foo(), then Foo only reuses
Bar and not Baz despite Bar reusing Baz. If Foo would call bar(), then there
is an indirect reuse of the transitive dependency Baz. A step-by-step review
protocol is available in the replication package.

Manual Analysis Table 7 tabulates the reasons for misclassification split by
network and number of use cases. Overall, the metadata-based network over-
approximates the dependency usage in 80% of the analyzed cases. Among
direct dependencies where the metadata-based networks over-approximate, we
identify seven instances where a package did not import any item from the
dependency relationship under analysis. Moreover, metadata-based networks
cannot distinguish dependency usage in non-runtime or conditionally compiled
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Table 7: Manual inspection and classification of 34 dependency relationships
between Präzi and the Crates.io index network.

Categorization #Samples

i) Over-approximation in metadata-based networks 27
. . . no import statements 3
. . . import statement and no usage 4
. . . resides in a #[cfg(...)] block 1
. . . derive macro libraries 2
. . . test dependency 1
. . . non-reachable transitive dependency 16

ii) Under-approximation in Präzi 7
. . . importing a constant 1
. . . importing data type and usage 1
. . . importing data type in definitions 4
. . . handling C-function call 1

Σ 34

sections of the source code. We found two cases; one case where a developer
uses a runtime dependency solely in test code and one conditional compilation
case where a dependency code runs only on Windows environments.

While Cargo has labels for build, test, optional, and platform-specific
dependencies in the manifest file, derive macro dependencies are not distin-
guishable from runtime dependencies. A derive macro library performs code-
generation at compile time. However, such libraries do not provide runtime
functionality and are closer to the role of being a build dependency. We iden-
tify two such libraries, cfg-if and thiserror. Including such dependencies
influences the count of runtime dependencies; for example, depending on the
widely popular serde derive27 library would incorrectly add six dependencies
to the total count of runtime dependencies. Without no specific metadata label
or heuristic, a call-based dependency network avoids including such libraries.

The most prominent case with over-approximation by metadata-based net-
works are non-reachable transitive dependencies. The context of how a package
uses its direct dependencies plays a central role in whether a package indirectly
uses its transitive dependencies. As an example, the package selfish uses nom
v3.2.1 that then depends on regex 0.2.11. nom is a parser library and ex-
ports a set of regex parsers that uses the regex library. Although selfish

enables the regex feature in nom, it does not import any of the regex parsers
in nom, effectively making the regex library unused.

In the four cases where a developer imports type definitions from dependen-
cies for use in function declarations. One such example is the case of importing
c int in libc for function declarations in whereami v1.1.1. Although a call
graph does not track data references, we could still mitigate this by track-
ing the type declarations in argument and return types of functions in the

27 https://docs.rs/crate/serde_derive/1.0.106/source/Cargo.lock

https://docs.rs/crate/serde_derive/1.0.106/source/Cargo.lock
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call graph. Präzi embeds full type qualifiers including package information in
functions belonging to call-based dependency networks (See Section 3.1).

Finally, we identify one instance where the call graph generator could not
resolve a call from subprocess v0.1.0 to the libc function pipe(). Although
there is a pipe call without clear identifiers in the call graph, it is not via the
libc library. Thus, there are possible limitations with handling cross-language
calls.

A call-based dependency network is more precise than a metadata-based
network. Data-only dependencies could affect its soundness.

6 Discussion

We center our discussion on two key aspects; differences and similarities be-
tween using three different networks for network analyses and studying func-
tion relationships on a network level.

6.1 Strengths and Weaknesses between Metadata and Call-based Networks

As package repositories do not test whether a package can build or not, devel-
opers can by mistake or unknowingly publish broken versions to Crates.io.
By verifying the build of package releases, the Docs.rs network excludes pack-
age releases that do not have a successful build record. When comparing the
results of the network analyses in Figure 6 with Crates.io index network,
overall, we find them to have comparable results except in the formative years
of Crates.io. The diverging results in the initial years show that a large num-
ber of releases are not reproducible and consumable, stressing the importance
of performing additional validation besides the correctness of packages man-
ifests. Thereby, we urge researchers to minimally validate package manifests
with external information such as publically available build and test data for
network studies of package repositories.

When comparing the network analysis results in Figure 6, we find notable
similarities and differences between metadata-based and call-based networks
for Crates.io. Except for the formative years of Crates.io, the distributions
of recent snapshots for direct dependencies, direct dependents, and total de-
pendents are mostly similar between the networks. Thus, a network inferred
from Crates.io metadata closely approximates the presence of function reuse
relationships between packages without needing to construct and verify with
call graphs. Recent snapshots of Crates.io further indicate that recent pack-
age releases are highly likely to be reproducible and compile as well. On the
other hand, there are also significant differences between the networks, specif-
ically for transitive dependencies and outliers in dependent distributions. By
taking into account that a developer does not make use of all APIs avail-
able in a package, we identify a two-fold difference between call-based and
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metadata-based networks. These differences also manifest among the most
popular dependent packages (i.e., outliers)—despite the networks reporting
similar results for the average dependent package.

Based on these similarities and differences, we conduct a manual analysis
to understand which network has a more accurate representation of package
repositories. Our investigation indicates that call-based dependency networks
are more precise than metadata-based networks; the prominent finding is that
the number of transitive dependencies a package uses is highly contextual
and moderately correlates with the number of declared dependencies. From
a statistical viewpoint, we identify a strong correlation between the number
of dependencies derived from a metadata-based network and the number of
called dependencies. In other words, the more resolved transitive dependencies
a package has, the more transitive dependencies it will call. On the other hand,
we only observe a moderate correlation between declared (direct) dependen-
cies and called transitive dependencies, indicating that the number of called
transitive dependencies potentially varies for the same number of direct de-
pendencies. Based on our studied use cases, we find examples of packages only
importing non-core functionality from libraries or specific modules of packages
that use individual libraries by themselves. Despite limitations with data-only
dependencies, we argue that calculating the number of transitive dependencies
should not be generalized to the sum of all resolved dependencies. In line with
previous work on the fine-grained analysis of known security vulnerabilities, we
also argue both researchers and practitioners interested in understanding how
developers or programs use dependencies should account for its context—not
the number of compiled dependencies.

As a summary, we make the following recommendations based on the trade-
offs and costs for constructing a call-based dependency network:

– Direct dependencies: Given the relative proximity of results between
a metadata-based and call-based network, a metadata-based network is
sufficient for use cases involving direct dependencies if precision is not
crucial. The cost of building a call-based dependency network would be
overly expensive.

– Transitive dependencies: Where transitive dependencies are central
in any analysis, we recommend call-based dependency networks over
metadata-based networks.

– Data-dependencies: Where data references are crucial to track or study-
ing data-centric packages in Crates.io, we recommend metadata-based
dependency networks or use additional (cheap) static analysis to identify
data dependencies. Although metadata-based networks are imprecise, they
will not miss such relationships.

6.2 Transitive API Usage

For studying the evolution, impact, and the decision-making of depreca-
tion (Robbes et al. 2012; Sawant et al. 2018b) and refactorings (Kula et al.
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2018b) of library APIs, datasets such as fine-GRAPE (Sawant and Bacchelli
2017) provide valuable insights into how a large number of clients in the wild
make use of a few popular libraries. These datasets extract API usage by
mining direct invocation of library APIs (i.e., a client calling a public API
function). By analyzing the use of APIs in transitive dependencies of clients
(i.e., indirect API use) in addition to direct dependencies, we find that there
are more calls to transitive dependencies than direct dependencies in recent
years. Thus, the transitive relationship where either an intermediate client or
library relays a call between a client and a library could potentially present new
confounding variables and implications to the evolution and decision-making
of APIs. Although developers do not have control of transitive package de-
pendencies, they have the same execution rights and follow the same laws of
software evolution (Lehman 1980) as direct dependencies. Thus, API decisions
in transitive dependencies can equally impact clients as direct dependencies.

As package managers allow the same dependency (albeit different versions
of them) to co-exist in a client, our results in RQ2.4 show growing signs that
more and more copies of the same function identifier from multiple versions ex-
ist in a client. In cases where such a function is dependent on the environment
(e.g., a specific implementation of an OpenSSL library), there is a potential
risk for introducing unexpected incompatibilities. Such problems that arise
from the use of transitive dependencies can directly influence the decision-
making of APIs. For example, a user in PR #20 of IDnow SDK,28 an identity
verification framework, is persuading the maintainers to drop dependence on
Sentry, an application monitoring platform, due to the user having problems
with Sentry as several versions of that dependency exist in its application.

Given the increasing growth of indirect API calls and a slight increase
of multiple copies of the same function identifier appearing in clients,
we call for researchers to also account for the dynamics of dependency
management—particularly transitive dependencies—when studying the evo-
lution and decision-making around APIs.

7 Threats to Validity

In this section, we discuss limitations and threats that can affect the validity
of our study and show how we mitigated them.

7.1 Internal validity

For CDNs to closely mirror actual package reuse in Crates.io, we only con-
sider packages specified under the #[dependencies] section and optionally-
enabled packages as these are consumable in the source code. As packages in
#[dependencies] are also available in the test portion of packages, developers
could potentially specify packages for testing purposes that do not attribute

28 https://github.com/idnow/de.idnow.ios.sdk/issues/20

http://web.archive.org/web/20201201224416/https://github.com/idnow/de.idnow.ios.sdk/issues/20
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towards package reuse. We mitigate the risk of inferring test specific calls by
restricting the build of packages to compilation without further execution steps
such as tests.

The rust-callgraphs generator can resolve function invocations that
involve static and dynamic dispatch except for function pointer types. Al-
though the documentation29 states that function pointers have a specific and
limited purpose, we acknowledge that we cannot make any claims around
the completeness of generated CDNs due to the general absence of ground
truth for package repositories. When limiting the scope to the features that
the call graph generator supports, the generated CDNs represent an over-
approximation of function calls in Crates.io. It is an over-approximation as
function targets in dynamic dispatch may never be called by the end-user in
practice (i.e., it is inexact). Using additional analysis such as dynamic anal-
ysis to remove all unlikely function targets is error-prone and could result in
unsound inferences. Thus, we avoid considering both static (i.e., exact) and
dynamic (i.e., inexact) function calls as the same. Instead, we view the results
of dynamically dispatched calls from the perspective of virtual method tables
(i.e., its concrete representation during runtime).

Real-world constraints such as non-updated caches of the repository index,
user-defined dependency patches, and deviating semver specifications could in-
fluence the actual version resolution of package dependencies. The selection of
packages and their versions for creating snapshots has additional implications
on the representativeness of Crates.io and its users. To mitigate the risk of
making incoherent versions resolutions, we use the exact resolver component
implemented in Cargo, ensuring the same treatment of version constraints.

Kikas et al. (2017) report the highest package reach to be up to 30% in
2015 while our Crates.io metadata network report over 60%, nearly twice
the number. The difference lies in the selection of packages when creating the
networks: Kikas et al. (2017) build a dependency tree for all available versions
of a package valid at timestamp t and we build a tree for the single most
recent version of a package at a timestamp t. As there is no consensus on best
practices for which packages and releases to include in a network, we take a
conservative approach that avoids including dormant and unused releases. For
example, we argue that it is rare that a user today would declare a dependence
on version dating back to 2017 when newer versions from 2019 exist. Kikas
et al. (2017) would include such versions.

7.2 External and reliability validity

We acknowledge that the results of network analysis are not generalizable
to other package repositories and only explain properties of Crates.io. Due
to differences in community values (Bogart et al. 2016) and reuse practices
of packages, we expect network analyses to yield different results. However,

29 https://doc.rust-lang.org/book/first-edition/trait-objects.html

http://web.archive.org/web/20180416152826/https://doc.rust-lang.org/book/first-edition/trait-objects.html
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based on (Decan et al. 2018b) comparison of seven package repositories, we
believe certain repositories, for example, npm and NuGet may share some
similarities with Crates.io than with CRAN and CPAN.

The Präzi approach to constructing a CDN is general applicability as long
as the programming language has a resolver for package dependencies and a
call graph generator. However, the soundness of generated CDNs may vary
depending on the programming language. For example, CDNs generated for
Java are more accurate and practical than CDNs for Python due to limited
call graph support. Therefore, evaluating trade-offs in terms of precision and
recall plays an important role in whether a study scenario is suitable for CDN
analysis.

8 Future work

Our work opens an array of opportunities for future work in data-driven anal-
ysis of package repositories, both for researchers and tool builders.

8.1 Enabling data-driven insights into code reuse with network analysis

As functions are not the only form of achieving code reuse, we aim to explore
how we can model reuse of interfaces, generics, class hierarchies, and wrap-
per classes as networks. In a similar spirit to enabling data-driven insights of
APIs, language designers can use data-driven models to understand patterns
and adoption of certain code reuse practices. As Rust advocates developers
to prefer using generics over trait objects and limit the use of unsafe code
constructs, language designers can verify such premises with feedback through
network- and data-driven analyses of package repositories.

Following Zhang et al. (2020a)’s need-finding study on data-driven API
design, we are investigating possibilities to mine program contexts and error-
inducing patterns using Präzi to extract API usage patterns beyond syntactic
features and frequencies. Insights into involved API usage patterns can help
library maintainers to make changes echoing improvements that simplify code
reuse and strengthening the stability of a package repository.

8.2 Modeling socio-technical risks of package abandonment

Package repositories are successful in attracting developers to release new pack-
ages. However, they are less successful in keeping these packages maintained
on a long-term perspective. As a result of developers abandoning packages due
to shifting priorities, unmaintained packages are increasingly jeopardizing the
security and stability of package repositories. Notably, the event-stream inci-
dent (Baldwin 2018) is emerging as a textbook example of how the abandon-
ment of a package turned itself into a bitcoin stealing apparatus affecting thou-
sands of users. While survival analysis of packages can yield insights into the
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stages of abandonment (Valiev et al. 2018), understanding the social-technical
motives behind developer abandonment could potentially help develop a risk
control model that package repository owners can exercise. As an example,
when a package repository recognizes the slowdown of development activities
of popular yet central packages, they could explore incentives such as mon-
etary support, developer assistant in resolving long-running bug reports, or
discuss possible handover to a network of trustful developers. We are explor-
ing both quantitative and qualitative strategies on how to model and mitigate
risks around package abandonment using Präzi.

9 Conclusions

In this work, we devise Präzi, an approach combining manifests and call
graphs of packages to infer dependency networks of package repositories at
the function granularity. By implementing Präzi for Rust’s Crates.io, we
showcase the feasibility of compiling and generating call graphs for 70% of all
indexed releases. Then, we compare the Crates.io CDN against a conven-
tional metadata-based network and an enhanced corroborated version with
compile data in a study to understand their differences and similarities in
network analysis common to package repositories and derive new insights of
Crates.io. By using function call data, we find that packages do not indi-
rectly call 60% of their transitive dependencies. Packages that have transitive
consumers are likely to have three times more calls from indirect users than
direct users. When we investigated the trends of function calls, we observed
that packages make 6.6 new direct and 12.2 new indirect calls to dependencies
every six months. A majority of packages in Crates.io have no or limited
reachability; the most reachable function in 2020— max-level() in package
log—reaches 30% of all Crates.io packages. When comparing the three stud-
ied networks, we find that metadata-based networks closely approximates the
CDN for analysis involving direct package relationships. Analysis of transitive
package relationships and top-most dependent packages, on the other hand,
yield significantly different results for the studied networks. A manual inves-
tigation of 34 cases reveals that a CDN is more precise as it accounts for the
context of how packages use each other. Thus, dependency checkers such as,
Rust’s cargo-audit and GitHub’s Dependabot, can benefit from call graph
analysis to generate more precise recommendations for developers on transitive
dependencies. Overall, Präzi opens up new doors to precise network analysis
of code reuse and APIs of package repositories.
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A Selecting a time window for dependency resolution

Instead of using a single fixed version at all times, version constraints allow developers to use
a time-constrained version that updates itself at new compilations. Nearly all dependencies in
Crates.io specify a dynamic version constraint—only 2.92% of all dependency specifications
in Crates.io use a single (immutable) version (Dietrich et al. 2019). Before studying the
evolution and structure of Crates.io, we first decide the number of time points and a time
window between each time point. Although popular studies such as (Kikas et al. 2017)
and (Decan et al. 2019) use a time window of one year to study structural changes, we,
instead, determine a time window based on the frequency of structural changes in Crates.io.
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After resolving the dependency tree of a set of packages in Crates.io at a time t, we
then re-resolve it using six different time points (i.e., one day, one week, one month, three
months, six months, and one year) to find a time window where a large fraction of them
have a changed dependency tree. We perform this using a set of packages having at least
one non-optional dependency at the beginning of 2017 (5,252 package releases), 2018 (9,716
package releases), and 2019 (16,098 package releases).

Figure 11 shows the fraction of packages with a changed dependency tree (i.e., a tree
with at least one different version) over time. We observe a logarithmic trendline for each
year group; a high increase of packages with changed dependency between time points
before three months, and then it levels out. After one month, we already find that 40%
of all packages have a changed dependency tree due to new releases of 148 packages in
2017, 190 packages in 2018, and 240 packages in 2019. In all year groups, we find that the
dependence on libc triggers a new version resolution for most packages, followed by other
popular packages such as quote, serde, and syn. A manual inspection of the release log for
libc30 and serde31, suggests a frequency of at least two releases per month.

Finally, we also observe that 26% of all packages in 2017 have an identical dependency
tree after one year. Among those unchanged packages, nearly all of them (2017: 83%, 2018:
93%, 2019: 90%) are outdated packages. With outdated, we mean that no recent releases
for those packages in more than one year. Although packages may be outdated, they still
could use flexible version constraints. In roughly one-third (2017: 31%, 2018: 34% 2019:
40%) of all dependency constraints, the dependencies are outdated packages (i.e., there
are no recent releases). In the remaining cases (i.e., where more recent versions exist), the
version constraints cover old releases (e.g., depending on serde 2.x when 4.x exists), and
less than 1% are fixed versions. For example, xml-attributes-derive::0.1.032 depends on
older versions of syn, quote, and proc-macro2, and trie-root::0.11.033 depends on an old
version of hash-db.

Given these observations, we select a time window of one month and thus perform
dependency resolution every month per year.

40% of all Crates.io packages have at least one dependency resolving to a new version
after 30 days.

30 https://crates.io/crates/libc/versions
31 https://crates.io/crates/serde/versions
32 https://docs.rs/crate/xml-attributes-derive/0.1.0/source/Cargo.toml
33 https://docs.rs/crate/trie-root/0.11.0/source/Cargo.toml

https://crates.io/crates/libc/versions
https://crates.io/crates/serde/versions
https://docs.rs/crate/xml-attributes-derive/0.1.0/source/Cargo.toml
https://docs.rs/crate/trie-root/0.11.0/source/Cargo.toml
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